29 research outputs found

    Cell cycle regulates cell type in the Arabidopsis sepal

    Get PDF
    The formation of cellular patterns during development requires the coordination of cell division with cell identity specification. This coordination is essential in patterning the highly elongated giant cells, which are interspersed between small cells, in the outer epidermis of the Arabidopsis thaliana sepal. Giant cells undergo endocycles, replicating their DNA without dividing, whereas small cells divide mitotically. We show that distinct enhancers are expressed in giant cells and small cells, indicating that these cell types have different identities as well as different sizes. We find that members of the epidermal specification pathway, DEFECTIVE KERNEL1 (DEK1), MERISTEM LAYER1 (ATML1), Arabidopsis CRINKLY4 (ACR4) and HOMEODOMAIN GLABROUS11 (HDG11), control the identity of giant cells. Giant cell identity is established upstream of cell cycle regulation. Conversely, endoreduplication represses small cell identity. These results show not only that cell type affects cell cycle regulation, but also that changes in the cell cycle can regulate cell type

    Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens

    Get PDF
    Background: Land plants evolved from aquatic algae more than 450 million years ago. Algal sisters of land plants grow through the activity of apical initial cells that cleave either in one plane to generate filaments or in two planes to generate mats. Acquisition of the capacity for cell cleavage in three planes facilitated the formation of upright bushy body plans and enabled the invasion of land. Evolutionary transitions between filamentous, planar, and bushy growth are mimicked within moss life cycles. Results: We have developed lineage analysis techniques to assess how transitions between growth forms occur in the moss Physcomitrella patens. We show that initial cells giving rise either to new filaments or bushy shoots are frequently juxtaposed on a single parent filament, suggesting a role for short-range cues in specifying differences in cell fate. Shoot initials cleave four times to establish a tetrahedral shape and subsequently cleave in three planes, generating bushy growth. Asymmetric and self-replacing divisions from the tetrahedral initial generate leaf initials that divide asymmetrically to self-replace and to produce daughter cells with restricted fate. The cessation of division in the leaf is distributed unevenly and contributes to final leaf shape. Conclusions: In contrast to flowering plants, changes in body plan in P. patens are regulated by cues acting at the level of single cells and are mediated through asymmetric divisions. Genetic mechanisms regulating shoot and leaf development in P. patens are therefore likely to differ substantially from mechanisms operating in plants with more recent evolutionary origins

    Segmenting the sepal and shoot apical meristem of Arabidopsis thaliana

    Get PDF
    We present methods for segmenting the sepal and shoot apical meristem of the Arabidopsis thaliana plant. We propose a mathematical morphology pipeline and a modified numerical scheme for the active contours without edges algorithm to extract the geometry and topology of plant cells imaged using confocal laser scanning microscopy. We demonstrate our methods in typical images used in the studies of cell endoreduplication and hormone transport and show that in practice they produce highly accurate results requiring little human intervention to cope with image aberrations

    Computational morphodynamics of plants: integrating development over space and time

    Get PDF
    The emerging field of computational morphodynamics aims to understand the changes that occur in space and time during development by combining three technical strategies: live imaging to observe development as it happens; image processing and analysis to extract quantitative information; and computational modelling to express and test time-dependent hypotheses. The strength of the field comes from the iterative and combined use of these techniques, which has provided important insights into plant development

    Computational Morphodynamics: A Modeling Framework to Understand Plant Growth

    Get PDF
    Computational morphodynamics utilizes computer modeling to understand the development of living organisms over space and time. Results from biological experiments are used to construct accurate and predictive models of growth. These models are then used to make novel predictions that provide further insight into the processes involved, which can be tested experimentally to either confirm or rule out the validity of the computational models. This review highlights two fundamental challenges: (a) to understand the feedback between mechanics of growth and chemical or molecular signaling, and (b) to design models that span and integrate single cell behavior with tissue development. We review different approaches to model plant growth and discuss a variety of model types that can be implemented to demonstrate how the interplay between computational modeling and experimentation can be used to explore the morphodynamics of plant development

    What determines cell size?

    Get PDF
    AbstractFirst paragraph (this article has no abstract) For well over 100 years, cell biologists have been wondering what determines the size of cells. In modern times, we know all of the molecules that control the cell cycle and cell division, but we still do not understand how cell size is determined. To check whether modern cell biology has made any inroads on this age-old question, BMC Biology asked several heavyweights in the field to tell us how they think cell size is controlled, drawing on a range of different cell types. The essays in this collection address two related questions - why does cell size matter, and how do cells control it

    An optimized pipeline for live imaging whole Arabidopsis leaves at cellular resolution

    No full text
    Abstract Background Live imaging is the gold standard for determining how cells give rise to organs. However, tracking many cells across whole organs over large developmental time windows is extremely challenging. In this work, we provide a comparably simple method for confocal live imaging entire Arabidopsis thaliana first leaves across early development. Our imaging method works for both wild-type leaves and the complex curved leaves of the jaw-1D mutant. Results We find that dissecting the cotyledons, affixing a coverslip above the samples and mounting samples with perfluorodecalin yields optimal imaging series for robust cellular and organ level analysis. We provide details of our complementary image processing steps in MorphoGraphX software for segmenting, tracking lineages, and measuring a suite of cellular properties. We also provide MorphoGraphX image processing scripts we developed to automate analysis of segmented images and data presentation. Conclusions Our imaging techniques and processing steps combine into a robust imaging pipeline. With this pipeline we are able to examine important nuances in the cellular growth and differentiation of jaw-D versus WT leaves that have not been demonstrated before. Our pipeline is approachable and easy to use for leaf development live imaging

    Fruit Development in Arabidopsis

    No full text
    corecore