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Abstract— We present methods for segmenting the sepal and
shoot apical meristem of the Arabidopsis thaliana plant. We
propose a mathematical morphology pipeline and a modified
numerical scheme for the active contours without edges algo-
rithm to extract the geometry and topology of plant cells imaged
using confocal laser scanning microscopy. We demonstrate
our methods in typical images used in the studies of cell
endoreduplication and hormone transport and show that in
practice they produce highly accurate results requiring little
human intervention to cope with image aberrations.

I. INTRODUCTION

The weed Arabidopsis thaliana is the de facto model
organism in plant molecular biology and it is one of the
most studied plant model systems [1]. In our current inves-
tigations we aim to understand how biochemical signaling
coupled with mechanical forces and cell geometry governs
cell growth and gives rise to patterns in plants. Image
segmentation is an important step in these developmental
studies as it provides ways to quantify shape, size, and
positioning of cells over time.

We are particularly interested in segmenting two regions of
Arabidopsis: the sepal and the shoot apical meristem (SAM).
The sepal is a defensive organ that encloses and protects the
developing reproductive structures. The outer sepal epidermis
contains a characteristic pattern of diverse cell sizes ranging
from giant cells one-fifth the length of the sepal to small
cells one-hundredth the length of the sepal. Shoot apical
meristems are collections of stem cells found at the tip of
each growing shoot of a plant. They provide the cells that will
differentiate into leaves and flowers (including sepals), and
into the stem. The SAM is not only an interesting example
of a stem cell population that is highly regulated in its size,
patterns of cell division, and products, but also is of practical
importance, as most of what humans eat (such as grains and
fruits) is derived from it.

Previous work. There are a few articles describing seg-
mentation methods for Arabidopsis. In [2], Marcuzzo et al.
propose a cell segmentation method for the Arabidopsis
root. They apply the watershed method and then discard
regions falsely labeled as cells using a SVM classifier which
is trained to identify false cells based on a cell contour
descriptor. Results show a reduced false-positive rate of
true cells as compared to the pure watershed segmentation
results. Our work differs from theirs in the segmentation

procedure and we do not discard badly segmented cells
but rather offer ways to correct them. The work of de
Reuille et al. [3] proposes a protocol to extract cell geometry
and topology in the outer surface layer of the Arabidopsis
apical meristem. Their method approximates the surface by
manually marking junction vertices where cell walls meet
and manually assigning which vertices belong to each cell.
An automatic procedure then determines the 2D polygonal
cell topology and maps it to the 3D surface of the meristem.
Contrary to them, we automatically, or semi-automatically,
compute the outline of each cell and then automatically
determine junction vertices and overall cell topology. In
addition, we allow for curved cell walls.

In the next section we present our segmentation methods
followed by a section with results and concluding remarks.

II. METHODS

We propose segmenting sepals and meristems using the
variational formulation of Chan and Vese [4] and a math-
ematical morphology based pipeline of our own targeted
to our images. Both approaches have benefited from robust
denoising prior to segmenting. We explain all methods in the
following subsections.

Data collection. To measure the epidermal cell size in
sepals, the plasma membrane of epidermal cells were fluores-
cently labeled with pATMLI1::mCitrine-RCI2A. A confocal
laser scanning microscope was used to capture 3D stacks
of the sepal epidermis. Images were acquired in vivo at
low illumination to avoid damaging the plant tissue. Since
the sepal is nearly flat, maximum intensity projections were
made. While cell walls in projections are more intense, the
overall image contains more spurious data coming from
different slices of the stack. Further, the same cell walls in
different slices do not completely align sometimes giving the
false impression that double parallel walls exist. Generally,
a whole sepal could not fit in one single image frame, so
multiple frames were taken and manually assembled to ob-
tain an entire sepal image. Meristems were also fluorescently
labeled and imaged using a confocal microscope but neither
projecting nor mosaicing were necessary.

Notation. An image [ : G C 7 = Z*, for G an indexed
grid, has quantized intensity values u; € [0, L], e.g. L = 255,
at grid points (x;,y;),7 = 1,...,|I|. When necessary we
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Fig. 1.  Denoising improves cell wall localization. Example image
on the left shows a magnification of four neighboring meristem cells.
Denoising accentuates the localization of their walls thus facilitating pos-
terior segmentation. We used here m = 4 denoising iterations with
|NF| = 7x7 (white square inset), |[P¥| = 3x3 (red and yellow squares),
and h* = 2, for all iterations k € [0, 3]. Histogram stretching was used to
enhance the contrast of the denoised image shown on the right.

A. Noise reduction

Low illumination, necessary to avoid photobleaching and
live tissue damage, resulted in significant shot noise in all
slices of the confocal z—stack and in its maximum inten-
sity projection. Noise in fluorescence microscopy typically
follows a Poisson distribution so it would be natural to
adopt a Poisson denoising filter for our plant images. We
instead use nonlocal means whose core formulation assumes
a Gaussian additive noise. In practice, a scale space nonlocal
means behaved extremelly well to separate cell walls from
cell interior and background despite not being of Poissonian
nature.

We used the fast algorithm and implementation for non-
local means described in [6] but recasted in a scale space
fashion: for each pixel ¢ € I we compute its (k + 1)-th
restored value u**! using the nonlinear convex combination

7
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where the symmetric weights wfj = wfi > 0 form a partition
of unit, ) y wfj = 1. The weight w¥, measures how much

k
pixel j, located in the immediate neighborhood (square patch
centered at 7) Ni’C of pixel 7, contributes to the restored value
of i at iteration k. We compute weights using
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where df; = d(PF, PF) is a measure of similarity between

the square patches PF and Pf centered, respectively, at

pixels i and j (see Fig. 1); h* € R* is a global parameter
governing the similarity decay and smoothing (h* = 0
gives the mean filter). In the special case 7 = ¢ we have

wf;, = maxjz{w};}. High (weak) similarity implies a
large (small) positive contribution among pixels. W} is the

normalization coefficient W} = >0+ thdsz)*l. Let

k

vF = v(PF) be the vector of intensities for pixels in PF,

k=0,...,m—1 (1)

Vf _ {U;C | le sz}’ and ij = vf — V?. Then
1
diy = [V, = (vij, vi)*? )

where ||-||, is the Euclidean lo norm, gives an efficient
way of computing similarity between patches. Patches and
neighborhoods are typically squares with P¥ C NF and
|PF| = |PF|,INf| = |Nj|, and their sizes are allowed to

change at each iteration k£ and for every pixel throughout the
image.

Computing (1) can be quite expensive: for each pixel
i € I we need to visit all its |V,| neighbors and for
every neighbor compute a distance metric involving |P;|
calculations. The total arithmetic cost per iteration is then
O(I]|N;||P;])- In [6] this has been reduced to O(|I||N,|).
But the communication cost, i.e. moving data between levels
of memory hierarchy, is quite more expensive if not carefully
addressed. In our current implementation a 102421024 image
is filtered in little less than 0.3 seconds (wall clock time) for
|N;| = 11x11 and any size of P,. All timing results we report
in this article are for runs on a Intel® Core i7-965, 4 cores,
3.2GHz, 8MB cache computer. We refer the reader to [6] for
details about our fast multicore implementation.

B. Variational segmentation

The celebrated Active Contours Without Edges segmenta-
tion model [4] is attractive due to its simplicity and because
it doesn’t require image derivatives typically employed to
detect region boundaries. And it is specially attractive to
our problem because we only have two regions to segment:
cell walls and cell interior which have intensities similar to
background. The model can be viewed as a thin rubber band
with longitudinal stiffness p > 0 that is allowed to bend,
break, and join in order to separate the image domain in
inside and outside regions, each possibly disconnected and
each having, respectively, average intensity of ¢; > 0 and
co > 0.

Let ¢ : Q C R? — R, be a level set function with the
usual attributes: ¢ > 0 inside the region of interest, ¢ < 0
outside, and at the interface between these regions ¢ = 0.
Following [4], ¢ has energy J(¢)

T6) = [ (w=erPHO)+u=e2 (1= H ()44 VH()

4
where H (¢) is the Heaviside function used to localize insi((ie),
H =1, and outside, H = 0, regions. The first two terms
of J(¢) correspond to the data fidelity we want to impose:
c1 — uon cell walls and co — @ inside cells and background
(u is the mean value of w). The last term in (4) gives
the length of the rubber that we need to control with a
large enough p to avoid unnecessary wiggly curves and
with a sufficiently small x4 to allow topology changes when
necessary but without picking irrelevant tiny regions in the
image. Choosing an appropriate ;¢ does matter to obtain good
results and numerical convergence.

After considering Neumann boundary conditions on ¢ one
obtain the gradient descent Euler—Lagrange PDE equivalent
to minimizing 7 (¢)

O = 6.(0)ln(9) — (u— )+ (u = e2)?) =
= 0Ok(@) — (=) + (=) =0 (5)
where ¢(xz,t) now depends on the fictitious variable

6(2,0) = 8%, 5(9) = V- 2
of the surface implied by ¢, and J.(¢) = £/(n(e? + ¢°))

is the e—mollified delta function. We modified the numerical

gives the mean curvature
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Fig. 2. Sepal cells segmented with active contours and morphological operators. Top row - active contours: a portion of the maximum intensity
projection of a sepal confocal 3D-stack is shown in (A) with red circles corresponding to the initial zero level contours, ¢(®) = 0, used by the variational
method. (B) Automatically segmented cell walls are shown in gray color with manually added patches shown in magenta. Most often we need to add other
than remove patches when using the variational method. (C) Stylized final cell walls after thinning and pruning the repaired thick edges in (B). Bottom row
- morphology: image (E) shows the thick edges obtained by the morphological method and the necessary repairs in green (erase) and magenta (add). Note
that in this particular case more editing is necessary when compared to the variational result in (B) but in turn we obtain a larger number of segmented
cells. In (F) we have the stylized cell walls after morphological segmentation. In (D) one can appreciate the difference between variational (shown in
green) and morphological segmentations (shown in white): regions colored magenta show where cell walls agree in both segmentations. A few boxes in
(D) highlight regions where segmentations mostly differ either due to wall localization or completely missing cell walls (not counting whole cells solely

present in (F) but not in (C)).

discretization used in [4] to solve (5) as we integrate using
explicit, not implicit, finite difference schemes for time and
space derivatives of ¢. This significantly improves efficiency
as we don’t need to solve a linear system at each time
step. But this comes at a price: the time integration is no
longer unconditionally stable. In practice, for this particular
problem, the explicit scheme behaves extremely well. Let
Ke(@) =V - (Vo/(|[Vo| + €)), where we add 0 < e < 1 to
the denominator to avoid division by zero (e.g. € = 10™%),
and ") = ke(¢)) its finite difference approximation. We
then obtain updates for ¢, starting from a given ¢(®),

oD = 0L At E) [+ (u—cf )2~ (u—c")?] (6)

where all the terms on the right hand side are evaluated for
¢>(’“). Note that ¢; and cy must be recomputed after each
update of ¢ as new average values develop when the inside
and outside regions are modified.

Since gradient descent can be extremely slow in some
cases it is common practice to iterate (6) for a large fixed
number of iterations. We instead opt for another convergence

criteria. From (5),

R e A TR S NG
shows, maybe more clearly, that ¢; and co are the forces
driving the modification of ¢, and consequently the seg-
mentation. Thus it is important to track how they change
during the numerical integration. Therefore, in addition to a
maximum allowed number of iterations, we achieve conver-
gence when |c§k+1) — cgk)| < f and \cgkﬂ) - cgk)\ < f8 for
some small 3 (e.g. 8 = 1075). What this means is that we
decide to stop whenever the number of pixels exchanging
regions is irrelevant to modify both average intensities. At
this point there is little to no progress in the propagation of
the interface which can be a sign that we converged to a
reasonable segmentation or that the chosen value for p does
not allow further developments. As a safeguard measure, we
apply this stopping criteria only after it is repeated a certain
number of consecutive times (e.g. 10 times). In practice, we
had to learn which values of 1 were suitable across multiple
images of sepals and meristems (in general p € [0.1, 3.0]).
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Fig. 3. Interactive editing with a binary brush. (A) A closer look
in a region of a sepal image reveals spots where cell wall information is
very weak (double arrows) and where contamination appears partly due
to the projection procedure (single arrows). Consequently, the thick edges
built using the morphology operators are faulty in (B). Contamination is
removed by painting with black (showed in green) and missing regions are
completed using a white brush (shown in magenta). (C) After corrections we
automatically generate one pixel wide edges and compute junctions where
cell walls meet (red squares).

C. Morphological segmentation

The simplicity, efficiency, and flexibility of mathematical
morphology [5] operators encouraged us to investigate an-
other segmentation method less expensive than solving the
PDE in Eq. (5). We were also motivated by the denoising
results: we noticed that we could carefully turn the denoised
gray scale images into binary images without destroying the
location of cell walls. The scale space denoising filter was
crucial to obtain good binary images much needed by our
mathematical morphology pipeline.

Given a denoised image I, we submit it to the following
sequence of transformations (image R is updated after each
step):

o Edge detection (V). We used a simple first derivative
method to detect the edges: R < 0|VI™|,6 = scaling
factor to create thick edges.

o Threshold (D). The current image is then thresholded
to remove as much as possible regions away from
the edges, where the gradient is low (within cells and
background): R < Do R.

o Hole closing (C). The ridges of the original edges
have zero derivative and they need to be closed after
thresholding is applied: R <— H o R, where H is the
operator that sets a pixel to white if at least five of its
immediate neighbors are also white.

o Thinning (7°). We thin edges to form a pixel wide lines:
R+ ToR.

o Pruning (P). We finally prune dangling lines and open
contours and remove all isolated white pixels: R <
P o R. We obtain something like Fig 3C.

« Editing (£). After investigating results, and when nec-
essary, the user patches the segmentation by editing the
binary image generated by the hole closing and then
reapply thinning and pruning to obtain a new set of
complete cells: R < Eo R.

The combination of these operations resulted in good quality
but not necessarily perfect segmentations. The drawback of
neighborhood denoising with averaging schemes like the one
shown in (1) is that they don’t preserve contrast. After a
number of scale space iterations faint edges might completely
disappear (see Fig 3). The user usually can quickly detect
missing cells after a visual inspection of the segmented image

R above and then act to improve results interactively.

III. RESULTS

After applying our variational and morphological methods
to segment images of sepals and shoot apical meristems we
have found that in practice our morphological approach is
more easily adjustable to image variations. Our C/C++ vari-
ational engine segments a 256x256 image in approximately
less than 30s. The MATLAB based morphological method
consumes only around 5s for the same image. Controlling
the key parameters 1, 3, (%), At in the variational method
was more challenging and time consuming but results were
visually competitive when tuned values were in place. Both
methods often generate partial results only. Coping with all
possible image variability and aberrations seems infeasible
and automatic results are usually sub-optimal across diverse
segmentation algorithms. We advocate for a semi—automatic
scheme where the computer provides automatic results that
can be easily repaired by human intervention if necessary.
We offer users an editing mechanism for painting with a
binary brush not the original, high value images but rather
a byproduct of the segmentation process (thick edges, see
Figure 3).

Results after segmenting 3,378 cells in 12 sepals using
the morphological method showed that the user had to
paint, in average, less than 3% of the pixels on the faulty
thick edges resulting in high quality segmentations and cell
measurements necessary to quantify studies of cell endoredu-
plication and patterning [7]. For comparison, this same
interactive approach was also applied to results obtained with
the variational model (see figure 2) and in meristems. We
will systematically quantify in the future how much manual
editing is necessary in these cases but we expect, in general,
similar behavior.

We use the precision-recall framework [8][9] to compare
automatic, semi-automatic, and ground-truth segmentation
results. Precision p gives the percentage of contour pixels in
the source segmentation for which we have a corresponding
contour pixel in the target segmentation. The reverse gives
the recall r value: the proportion of pixels in the target
segmentation that were correctly captured in the source
segmentation. The harmonic mean of precision and recall
gives the F'-measure, F' = 2pr/(p+7), a single number that
indicates how similar two segmentations are. In the ideal
case, p = r = F = 1, i.e. source and target segmenta-
tions perfectly match (within some allowed uncertainty). By
definition, precision is sensitive to over segmentation while
recall is sensitive to under segmentation but F' is unbiased.
When computing pixel correspondence in two segmentations
we consider a small uncertainty in the position of matching
pixels to account for imprecision in boundary detection (the
same edge in the two segmentations might be off by a few
pixels). This is realized by a uncertainty search radius s,
measured in pixels. A large radius yields high precision and
recall values so it is reasonable to limit it to moderate values,
e.g. s € [2,7. We use the fast matching algorithm and
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Fig. 4.
meristem with the region of interest in the dashed square. Cell plasma membranes are fluorescently labeled with green and nuclei with red. We are interested
in segmenting the cell walls and thus we work with the green channel only. In (B) we show our automatic morphological segmentation result (no editing
is necessary) with red dots at the junction points. We superimpose the segmentation of three consecutive slices to show in (C) that segmented cell contours
largely agree when we move from one slice to the next in the stack, specially for slices close to the epidermis. In (D) we have a 3D visualization of the
segmented meristem stack in its natural, live aspect ratio. Manual editing was necessary in some slices to produce this 3D reconstruction, most notably in
less illuminated slices deeper in the tissue.

TABLE I
MEAN PRECISION, RECALL, AND F-MEASURE FOR INCREASING RADIUS
radius 2 3 4 5 6 7 4.5

precision | 092 093 094 095 096 0.96 | 0.94
recall 0.84 085 086 087 087 0.88 | 0.86
F-measure | 0.88 0.89 0.90 090 091 091 | 0.90

TABLE II
GROUND TRUTH PRECISION-RECALL VALUES FOR RADIUS s = 5

automatic semi-automatic
sepal # > - ya > - o
1 099 085 091 | 099 092 0.96

091 092 091 | 095 095 0.95
15 089 093 091 | 096 095 0.96

implementation of [9] to compute precision and recall values
for a pair of segmentations.

We compare our automatic to our semi-automatic morpho-
logical results (Table I — the last column gives the average
over all radii ) and these to ground truth (manual segmenta-
tion) results (Table II). In the first case we have for 12 sepals
an average F-measure of 90% indicating again that minor
editing is necessary to correct the automatic segmentation.
The morphological semi-automatic segmentation in turn is
very similar to the ground truth: the F'-measure, as shown in
Table II, for three casually chosen and manually segmented
sepals gives an accuracy of over 95% when considering a
uncertainty radius of 5 pixels. Our automatic segmentation
in this case achieves 91% of accuracy, which we consider a
good success rate.

IV. CONCLUSION

We presented a numerical scheme for the Chan-Vese varia-
tional model and a mathematical morphology based pipeline
to segment sepal and meristem cells in the Arabidopsis
thaliana plant. Both methods greatly benefit from applying
a state—of—the—art denoising filter prior to segmentation. As
reported by a precision-recall analysis, our assisted segmen-
tation approach can achieve, in average, over 95% accuracy
when compared to ground truth, manually segmented data.
According to our experiments and given the limitations of
computer vision in offering fully automatic and completely

Illustration of morphological segmentation of meristem cells. The picture in (A) shows one slice of a 3D confocal stack of a shoot apical

robust solutions to problems easily corrected by humans we
see interactive, semi—automatic approaches similar to ours
as compelling mechanisms to deliver quick results to help
accelerate biological studies.
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