93 research outputs found

    Pharmacogenetics Role in Forensic Sciences

    Get PDF

    Editorial: The Challenge Posed by New Synthetic Opioids: Pharmacology and Toxicology

    Get PDF
    Diverted prescription opioid analgesics (e.g., oxycodone, hydrocodone, hydromorphone), failed opioid drug candidates (e.g., benzamide derivatives), and various legal and illegal fentanyl analogs (e.g., acetyl fentanyl, furanylfentanyl, carfentanil) constitute the class of New Synthetic Opioids (NSOs), which is currently posing a global public health threat (Pichini et al., 2018). Due to the low cost of materials and equipment required for clandestine laboratory production and enormous profit potential, NSOs are establishing a strong position on the illegal drug market as stand-alone products, adulterants in heroin, or constituents of counterfeit prescription medications. Recently, NSOs have been involved in a significant spike of acute intoxications (classic opioid toxidrome) and overdose deaths in North America, challenging healthcare professionals, law enforcement agencies fighting against their diffusion, and policymakers trying to restrain their use (Marchei et al., 2018; Busardò et al., 2019). Since there is little information available regarding the pharmacology and the toxicology of NSOs in abuse settings, the main purpose of this Research Topic was to fill the current knowledge gap. The topic covers basic scientific, epidemiological, and clinical aspects of NSOs and includes 3 reviews, 3 mini-reviews, 1 original article, 2 case reports, and 1 opinion

    Development and Validation of MPS-Based System for Human Appearance Prediction in Challenging Forensic Samples

    Get PDF
    Forensic DNA phenotyping (FDP) provides the ability to predict the human external traits from unknown sample donors, directly from minute amounts of DNA found at the crime scene. We developed a MPS multiplex assay, with the aim of genotyping all 41 DNA markers included in the HIrisPlex-S system for simultaneous prediction of eye, hair and skin colours. Forensic samples such as blood, skeletal remains, touch DNA, saliva swab, artificially degraded samples together with individuals with known phenotypes and a set of 2800 M control DNA were sequenced on the Ion Torrent platform in order to evaluate the concordance testing results and the forensic suitability of the 41-plex MPS assay. The panel was evaluated by testing a different number of PCR cycles and the volume of reagents for library preparation. The study demonstrated that full and reliable profiles were obtained with 0.1–5 ng, even with high degraded DNA. The increment of the number of PCR cycles results in an improvement of correctly genotyping and phenotyping for samples with low amounts of degraded DNA but higher frequencies of artefacts were found. The high DNA degradation level did not influence the correct genotyping and phenotyping and the critical parameter affecting the result is the quantity of input DNA. Eye and hair colour was predicted in 92.60% of individuals and skin colour in 85.15% of individuals. The results suggest that this MPS assay is robust, highly sensitive and useful for human pigmentation prediction in the forensic genetic field

    Exosomal transfer of miR-126 promotes the anti-tumour response in malignant mesothelioma: Role of miR-126 in cancer-stroma communication

    Get PDF
    none11MiR-126 has been shown to suppress malignant mesothelioma (MM) by targeting cancer-related genes without inducing toxicity or histopathological changes. Exosomes provide the opportunity to deliver therapeutic cargo to cancer stroma. Here, a tumour stromal model composed of endothelial cells (HUVECs), fibroblasts (IMR-90 cells), non-malignant mesothelial cells (Met-5A cells) and MM cells (H28 and MM-B1 cells) was used. The cells were treated with exosomes from HUVECs carrying endogenous (exo-HUVEC) and enriched miR-126 (exo-HUVECmiR-126), and the uptake/turnover of exosomes; miR-126 distribution within the stroma; and effect of miR-126 on cell signalling, angiogenesis and cell proliferation were evaluated. Based on the sensitivity of MM cells to exo-HUVEC miR-126 treatment, miR-126 was distributed differently across stromal cells. The reduced miR-126 content in fibroblasts in favour of endothelial cells reduced angiogenesis and suppressed cell growth in an miR-126-sensitive environment. Conversely, the accumulation of miR-126 in fibroblasts and the reduced level of miR-126 in endothelial cells induced tube formation in an miR-126-resistant environment via VEGF/EGFL7 upregulation and IRS1-mediated cell proliferation. These findings suggest that transfer of miR-126 via HUVEC-derived exosomes represents a novel strategy to inhibit angiogenesis and cell growth in MM.noneMonaco, Federica; Gaetani, Simona; Alessandrini, Federica; Tagliabracci, Adriano; Bracci, Massimo; Valentino, Matteo; Neuzil, Jiri; Amati, Monica; Bovenzi, Massimo; Tomasetti, Marco; Santarelli, LoryMonaco, Federica; Gaetani, Simona; Alessandrini, Federica; Tagliabracci, Adriano; Bracci, Massimo; Valentino, Matteo; Neuzil, Jiri; Amati, Monica; Bovenzi, Massimo; Tomasetti, Marco; Santarelli, Lor

    Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Assay for Quantifying Fentanyl and 22 Analogs and Metabolites in Whole Blood, Urine, and Hair

    Get PDF
    Recently, synthetic opioid-related overdose fatalities, led by illicitly manufactured fentanyl and analogs, increased at an alarming rate, posing a global public health threat. New synthetic fentanyl analogs have been constantly emerging onto the drug marked for the last few years, to circumvent the laws and avoid analytical detection. Analytical methods need to be regularly updated to keep up with the new trends. In this study, we aimed to develop a new method for detecting the newest fentanyl analogs with a high sensitivity, in whole blood, urine, and hair. The method is intended to provide to clinical and forensic toxicologists a tool for documenting consumption. We developed a comprehensive ultra-high-performance liquid chromatography-tandem mass spectrometry method for quantifying fentanyl and 22 analogs and metabolites. Urine samples were simply diluted before injection; a liquid-liquid extraction was performed for blood testing; and a solid phase extraction was performed in hair. The chromatographic separation was short (8 min). The method was validated with a high sensitivity; limits of quantifications ranged from 2 to 6 ng/L in blood and urine, and from 11 to 21 pg/g in hair. The suitability of the method was tested with 42 postmortem blood, urine, or hair specimens from 27 fatalities in which fentanyl analogs were involved. Average blood concentrations (±SD) were 7.84 ± 7.21 and 30.0 ± 18.0 μg/L for cyclopropylfentanyl and cyclopropyl norfentanyl, respectively (n = 8), 4.08 ± 2.30 μg/L for methoxyacetylfentanyl, (n = 4), 40.2 ± 38.6 and 44.5 ± 21.1 μg/L for acetylfentanyl and acetyl norfentanyl, respectively (n = 3), 33.7 and 7.17 μg/L for fentanyl and norfentanyl, respectively (n = 1), 3.60 and 0.90 μg/L for furanylfentanyl and furanyl norfentanyl, respectively (n = 1), 0.67 μg/L for sufentanil (n = 1), and 3.13 ± 2.37 μg/L for 4-ANPP (n = 9). Average urine concentrations were 47.7 ± 39.3 and 417 ± 296 μg/L for cyclopropylfentanyl and cyclopropyl norfentanyl, respectively (n = 11), 995 ± 908 μg/L for methoxyacetylfentanyl, (n = 3), 1,874 ± 1,710 and 6,582 ± 3,252 μg/L for acetylfentanyl and acetyl norfentanyl, respectively (n = 5), 146 ± 318 and 300 ± 710 μg/L for fentanyl (n = 5) and norfentanyl (n = 6), respectively, 84.0 and 23.0 μg/L for furanylfentanyl and furanyl norfentanyl, respectively (n = 1), and 50.5 ± 50.9 μg/L for 4-ANPP (n = 10). Average hair concentrations were 2,670 ± 184 and 82.1 ± 94.7 ng/g for fentanyl and norfentanyl, respectively (n = 2), and 10.8 ± 0.57 ng/g for 4-ANPP (n = 2)

    Human Hepatocyte 4-Acetoxy- N, N-Diisopropyltryptamine Metabolite Profiling by Reversed-Phase Liquid Chromatography Coupled with High-Resolution Tandem Mass Spectrometry

    Get PDF
    Tryptamine intoxications and fatalities are increasing, although these novel psychoactive substances (NPS) are not controlled in most countries. There are few data on the metabolic pathways and enzymes involved in tryptamine biotransformation. 4-acetoxy-N,N-diisopropyltryptamine (4-AcO-DiPT) is a synthetic tryptamine related to 4-hydroxy-N,N-diisopropyltryptamine (4-OH-DiPT), 4-acetyloxy-N,N-dipropyltryptamine (4-AcO-DPT), and 4-acetoxy-N,N-dimethyltryptamine (4-AcO-DMT). The aim of this study was to determine the best 4-AcO-DiPT metabolites to identify 4-AcO-DiPT consumption through human hepatocyte metabolism and high-resolution mass spectrometry. 4-AcO-DiPT metabolites were predicted in silico with GLORYx freeware to assist in metabolite identification. 4-AcO-DiPT was incubated with 10-donor-pooled human hepatocytes and sample analysis was performed with reversed-phase liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS/MS) in positive- and negative-ion modes. Software-assisted LC-HRMS/MS raw data mining was performed. A total of 47 phase I and II metabolites were predicted, and six metabolites were identified after 3 h incubation following ester hydrolysis, O-glucuronidation, O-sulfation, N-oxidation, and N-dealkylation. All second-generation metabolites were derived from the only first-generation metabolite detected after ester hydrolysis (4-OH-DiPT). The metabolite with the second-most-intense signal was 4-OH-iPT-sulfate followed by 4-OH-DiPT-glucuronide, indicating that glucuronidation and sulfation are common in this tryptamine’s metabolic pathway. 4-OH-DiPT, 4-OH-iPT, and 4-OH-DiPT-N-oxide are suggested as optimal biomarkers to identify 4-AcO-DiPT consumption

    Metabolic Pathways and Potencies of New Fentanyl Analogs

    Get PDF
    Up to now, little is known about the metabolic pathways of new fentanyl analogs that have recently emerged on the drug markets worldwide with high potential for producing addiction and severe adverse effects including coma and death. For some of the compounds, limited information on the metabolism has been published, however, for others so far no information is available. Considering the well characterized metabolism of the pharmaceutically used opioid fentanyl and the so far available data, the metabolism of the new fentanyl analogs can be anticipated to generally involve reactions like hydrolysis, hydroxylation (and further oxidation steps), N- and O-dealkylation and O-methylation. Furthermore, phase II metabolic reactions can be expected comprising glucuronide or sulfate conjugate formation. When analyzing blood and urine samples of acute intoxication cases or fatalities, the presence of metabolites can be crucial for confirmation of the uptake of such compounds and further interpretation. Here we present a review on the metabolic profiles of new fentanyl analogs responsible for a growing number of severe and fatal intoxications in the United States, Europe, Canada, Australia, and Japan in the last years, as assessed by a systematic search of the scientific literature and official reports

    Cannabidiol, ∆9 -Tetrahydrocannabinol, and Metabolites in Human Blood by Volumetric Absorptive Microsampling and LC-MS/MS Following Controlled Administration in Epilepsy Patients

    Get PDF
    Cannabidiol (CBD) exhibits anti-inflammatory, anxiolytic, antiseizure, and neuroprotective proprieties without addictive or psychotropic side effects, as opposed to Δ9-tetrahydrocannabinol (THC). While recreational cannabis contains higher THC and lower CBD concentrations, medical cannabis contains THC and CBD in different ratios, along with minor phytocannabinoids, terpenes, flavonoids and other chemicals. A volumetric absorptive microsampling (VAMS) method combined with ultra-high-performance liquid chromatography coupled with mass spectrometry in tandem for quantification of CBD, THC and their respective metabolites: cannabidiol-7-oic acid (7-COOH-CBD); 7-hydroxy-cannabidiol (7-OH-CBD); 6-alpha-hydroxy-cannabidiol (6-α-OH-CBD); and 6-beta-hydroxycannabidiol (6-β-OH-CBD); 11- Hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH). After overnight enzymatic glucuronide hydrolysis at 37°C, samples underwent acidic along with basic liquid-liquid extraction with hexane: ethyl acetate (9:1, v/v). Chromatographic separation was carried out on a C18 column, with the mass spectrometer operated in multiple reaction monitoring mode and negative electrospray ionization. Seven patients with intractable epilepsy were dosed with various CBD-containing formulations and blood collected just before their daily morning administration. The method was validated following international guidelines in toxicology. Linear ranges were (ng/ml) 0.5-25 THC, 11-OH-THC, THCCOOH, 6-α-OH-CBD and 6-β-OH-CBD; 10-500 CBD and 7-OH-CBD; and 20-5000 7-COOH-CBD. 7-COOH-CBD was present in the highest concentrations, followed by 7-OH-CBD and CBD. This analytical method is useful for investigating CBD, THC and their major metabolites in epilepsy patients treated with CBD preparations employing a minimally invasive microsampling technique requiring only 30 µL blood

    MiR-126 in intestinal-type sinonasal adenocarcinomas: exosomal transfer of MiR-126 promotes anti-tumour responses

    Get PDF
    Background: Intestinal-type sinonasal adenocarcinomas (ITACs) are aggressive malignancies related to wood dust and leather exposure. ITACs are generally associated with advanced stage at presentation due to the insidious growth pattern and non-specific symptoms. Therefore, biomarkers that can detect the switch from the benign disease to malignancy are needed. Essential for tumour growth, angiogenesis is an important step in tumour development and progression. This process is strictly regulated, and MiR-126 considered its master modulator. Methods: We have investigated MiR-126 levels in ITACs and compared them to benign sinonasal lesions, such as sinonasal-inverted papillomas (SIPs) and inflammatory polyps (NIPs). The tumour-suppressive functions of MiR-126 were also evaluated. Results: We found that MiR-126 can significantly distinguish malignancy from benign nasal forms. The low levels of MiR- 126 in ITACs point to its role in tumour progression. In this context, restoration of MiR-126 induced metabolic changes, and inhibited cell growth and the tumorigenic potential of MNSC cells. Conclusions: We report that MiR-126 delivered via exosomes from endothelial cells promotes anti-tumour responses. This paracrine transfer of MiRs may represent a new approach towards MiR-based therapy

    Search for residual prostate cancer on pT0 radical prostatectomy after positive biopsy

    Get PDF
    Reported incidence of no residual prostate cancer (i.e. pathological stage pT0) on radical prostatectomy ranges from 0.07 to 4.2%. The incidence is higher after neoadjuvant endocrine treatment. The aim of this study was to search for residual cancer on radical prostatectomy (RP) specimens when an initial sampling failed to find the cancer in patients with positive biopsy. Our database of 1,328 consecutive patients whose biopsies and RP specimen were both examined at the Polytechnic University-United Hospitals of the Marche Region between March 1995 and June 2006 was reviewed. The radical prostatectomies were grossly completely sampled and examined with the whole mount technique. We identified eight patients (i.e. 0.6%; three untreated and five hormonally treated preoperatively, i.e. 0.3 and 0.8%, respectively, of the total number of RPs included in the study) with positive biopsy and with no residual cancer in the initial routine histological examination of the RP. The RP of this group of eight was subjected to additional sectioning and evaluation of the paraffin blocks of the prostatectomy, also after block-flipping, immunostaining with an antibody against CAM 5.2, p63, PSA, and alpha-methylacyl-CoA racemase, and DNA specimen identity analysis. There were no cases with a false positive biopsy diagnosis, and cancer was not overlooked or missed in the initial routine histological examination of any of the 8 pT0 RPs. A minute focus of cancer (the diameter was always below 2.0 mm) was found on the additional sections in five. In particular, cancer was found after block-flipping in one of them. In an additional case, cancer was eventually discovered after immunostaining tissue sections for cytokeratin CAM 5.2, for p63 and PSA. In the remaining two cases (one untreated and the other hormonally treated), cancer was not found (0.15% of the 1,328 RPs included in the study); the review of the description of the macroscopic appearance of the RP and of its slides revealed that part of the peripheral zone corresponding to the site of the positive biopsy was missing, i.e. not removed from the patient at the time of the operation at least in one of the two. DNA specimen analysis confirmed the identity of the biopsy and prostatectomy in both. An extensive search for residual cancer reduces the number of pT0 RPs after a positive biopsy from 0.6 to 0.15%. It is recommended to have the needle biopsy reviewed, carefully look again at the radical prostatectomy, do deeper sections and then flip certain paraffin blocks. In addition, atypical foci should be stained for basal cell markers and often AMACR, especially in hormone-treated cases. If a block is missing part of the peripheral zone (capsular incision), this should be commented on. DNA analysis for tissue identity should be performed when the other steps have been taken without finding cancer
    • …
    corecore