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Recently, synthetic opioid-related overdose fatalities, led by illicitly manufactured fentanyl

and analogs, increased at an alarming rate, posing a global public health threat. New

synthetic fentanyl analogs have been constantly emerging onto the drug marked for the

last few years, to circumvent the laws and avoid analytical detection. Analytical methods

need to be regularly updated to keep up with the new trends. In this study, we aimed to

develop a new method for detecting the newest fentanyl analogs with a high sensitivity,

in whole blood, urine, and hair. The method is intended to provide to clinical and forensic

toxicologists a tool for documenting consumption. We developed a comprehensive

ultra-high-performance liquid chromatography-tandem mass spectrometry method for

quantifying fentanyl and 22 analogs and metabolites. Urine samples were simply diluted

before injection; a liquid-liquid extraction was performed for blood testing; and a solid

phase extraction was performed in hair. The chromatographic separation was short

(8min). The method was validated with a high sensitivity; limits of quantifications ranged

from 2 to 6 ng/L in blood and urine, and from 11 to 21 pg/g in hair. The suitability of the

method was tested with 42 postmortem blood, urine, or hair specimens from 27 fatalities

in which fentanyl analogs were involved. Average blood concentrations (±SD) were

7.84 ± 7.21 and 30.0 ± 18.0 µg/L for cyclopropylfentanyl and cyclopropyl norfentanyl,

respectively (n = 8), 4.08 ± 2.30 µg/L for methoxyacetylfentanyl, (n = 4), 40.2 ± 38.6

and 44.5 ± 21.1 µg/L for acetylfentanyl and acetyl norfentanyl, respectively (n = 3), 33.7

and 7.17 µg/L for fentanyl and norfentanyl, respectively (n = 1), 3.60 and 0.90 µg/L

for furanylfentanyl and furanyl norfentanyl, respectively (n = 1), 0.67 µg/L for sufentanil

(n = 1), and 3.13 ± 2.37 µg/L for 4-ANPP (n = 9). Average urine concentrations were

47.7 ± 39.3 and 417 ± 296 µg/L for cyclopropylfentanyl and cyclopropyl norfentanyl,

respectively (n = 11), 995 ± 908 µg/L for methoxyacetylfentanyl, (n = 3), 1,874 ± 1,710

and 6,582 ± 3,252 µg/L for acetylfentanyl and acetyl norfentanyl, respectively (n = 5),
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146 ± 318 and 300 ± 710 µg/L for fentanyl (n = 5) and norfentanyl (n = 6), respectively,

84.0 and 23.0 µg/L for furanylfentanyl and furanyl norfentanyl, respectively (n = 1), and

50.5 ± 50.9 µg/L for 4-ANPP (n = 10). Average hair concentrations were 2,670 ± 184

and 82.1 ± 94.7 ng/g for fentanyl and norfentanyl, respectively (n = 2), and 10.8 ± 0.57

ng/g for 4-ANPP (n = 2).

Keywords: fentanyl, fentanyl analogs, UHPLC-MS/MS, blood, urine, hair

INTRODUCTION

Fentanyl is a µ-opioid receptor agonist with strong anesthetic
and analgesic properties, with a 50- to 100-fold higher potency
than that of morphine. It has been used as a medication for
pain management since the 1960s and has been among the
most prescribed opioids for the last 3 decades (De Priest et al.,
2018). Fentanyl analogs with similar or higher potency, such as
sufentanil, alfentanil, and carfentanil, have been subsequently
synthesized and used in anesthesia and research (Meert et al.,
1988). Since they were first introduced onto the pharmaceutical
market, fentanyl and analogs have been misused in place of
heroin due to cheaper cost, causing numerous cases of overdose
and deaths by respiratory depression, cardiac arrest, or severe
anaphylactic reaction (Pichini et al., 2018). Fentanyl and analogs
are controlled under Schedule I of the 1961UN Single convention
on narcotic drugs since 1964 (UN, 1961). Following the recent
trend of the new psychoactive substances (NPS), new fentanyl
analogs started emerging onto the drug market to circumvent the
laws and avoid analytical detection (EMCDDA, 2018b). The first
substances appeared on the European drug market in 2012 and
mostly come from illicit laboratories based in China.

Recently, new synthetic opioids, and more specifically
fentanyl and analogs, have been causing a significant spike in
intoxications, posing a global public health threat (Prekupec

et al., 2017). Illicitly manufactured fentanyl and analogs have
been responsible for several thousands of fatalities in the past 3

years (Daniulaityte et al., 2017; O’Donnell et al., 2017; Pichini
et al., 2018) and the number of overdose cases is increasing at

an alarming rate (Peterson et al., 2016; Rudd et al., 2016; Pichini
et al., 2017; EMCDDA, 2018b; Scholl et al., 2018). In USA, new
synthetic opioids impacted the demographics of opioid-related

overdoses, traditionally associated with heroin and methadone
(Rudd et al., 2016; Scholl et al., 2018). In 2017, synthetic opioids
were involved in 59.8% of opioid-involved overdose fatalities
in the USA (28,466 fatalities involving synthetic opioids other
than methadone), which represents an increase of 45.2% from
2016 to 2017 (Scholl et al., 2018). These fatal overdoses were
dominated by illicit fentanyl and analogs (Daniulaityte et al.,
2017; O’Donnell et al., 2017). Recently, new synthetic opioids
have also raised concerns in Europe: the number of seizures of
fentanyl analogs was multiplied by 4 between 2015 and 2016
(1,200 seizures in 2016), and many cases of fatal intoxications
were reported (EMCDDA, 2018b). Illicit fentanyl, acetylfentanyl,
furanylfentanyl, and carfentanil are well-established synthetic
opioids and still on the rise (Daniulaityte et al., 2017; O’Donnell
et al., 2017). More recent substances, such as cyclopropylfentanyl,

methoxyacetylfentanyl, and valerylfentanyl are little known, and
have been involved in several deaths in Europe (Pichini et al.,
2017; EMCDDA, 2018c).

The number of intoxications and fatalities involving fentanyl
and analogs might be underestimated, as (1) they are likely
taken in combination with another opioid and may be unnoticed
(Daniulaityte et al., 2017), (2) confirmatory analytical tests are
not always performed for opioid-involved overdose fatalities and
fentanyl analogs overdoses are likely thought to be due to fentanyl
(Peterson et al., 2016), and (3) the low active concentrations of
fentanyl analogs in biological samples are challenging to detect
and require specialized highly-sensitive analytical instruments
(Concheiro et al., 2018). In addition, analytical methods need to
be constantly updated to keep up with the constant emergence of
new uncontrolled analogs.

In this study, we developed a new method by ultra-high-
performance liquid chromatography-tandem mass spectrometry
(UHPLC-MS/MS) to quantify fentanyl and 22 analogs and
metabolites in whole blood, urine, and hair. We aimed to
provide a fast, simple, and sensitive analytical tool for clinical
and forensic toxicologists to document the consumption of
the most recent fentanyl analogs described in the scientific
literature: acetylfentanyl, acetyl norfentanyl, alfentanil,
butyrylfentanyl, butyrylfentanyl carboxy metabolite, butyryl
norfentanyl, carfentanil, cyclopropylfentanyl, cyclopropyl
norfentanyl, despropionylfentanyl (4-ANPP), despropionyl
para-fluorofentanyl, fentanyl, furanylfentanyl, furanyl
norfentanyl, furanylethyl fentanyl, β-hydroxyfentanyl, β-
hydroxythiofentanyl, methoxyacetylfentanyl, methoxyacetyl
norfentanyl, norfentanyl, phenylacetyl fentanyl, sufentanil, and
valerylfentanyl carboxy metabolite were included. We confirmed
the suitability of the method by testing 42 samples from 27
postmortem cases.

MATERIALS AND METHODS

Chemicals and Reagents
Working standards (acetylfentanyl, acetyl norfentanyl, alfentanil,
butyrylfentanyl, butyrylfentanyl carboxy metabolite, butyryl
norfentanyl, carfentanil, cyclopropylfentanyl, cyclopropyl
norfentanyl, 4-ANPP, despropionyl para-fluorofentanyl,
fentanyl, furanylfentanyl, furanyl norfentanyl, furanylethyl
fentanyl, β-hydroxyfentanyl, β-hydroxythiofentanyl,
methoxyacetylfentanyl, methoxyacetyl norfentanyl, norfentanyl,
phenylacetyl fentanyl, sufentanil, and valerylfentanyl carboxy
metabolite) and deuterated internal standards (IS; acetyl
norfentanyl-D5 and fentanyl-D5) were purchased from Cayman
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Chemical (Ann Arbor, MI, USA) and stored at −20◦C until
use. LC-MS grade water, acetonitrile, methanol, and formic
acid and LC grade acetone and dichloromethane were obtained
from Sigma-Aldrich R© (Milano, Italy). Ammonium acetate
buffer was prepared with ≥97% purity ammonium acetate salt
(Sigma-Aldrich R©) dissolved in LC-MS water. VMA-T M3 R©,
Washing Solution, and Multimatrix Eluent were acquired
from Comedical R© s.r.l. (Trento, Italy); their composition is
not disclosed.

Calibrators and Quality Control Solutions
Stock solutions of each standard at 10 mg/L were prepared
in methanol. Standard stock solution containing all 23 non-
deuterated standards was prepared in methanol at 1 mg/L. IS
standard stock solution with acetyl norfentanyl-D5 and fentanyl-
D5 was prepared in methanol at 1 mg/L. Stock solutions were
stored in glass vials at−20◦C.

Calibrator working solutions were daily prepared from the
standard stock solution in methanol (5 calibrators along the
working range). Low, medium, and QC working solutions were
daily prepared from the standard stock solution in methanol. IS
working solution was daily prepared from the IS stock solution in
methanol to reach a concentration of 5 µg/L in urine and blood
samples and 5 ng/g in hair samples.

Human Samples
Blank human blood, urine, and hair were obtained from the
laboratory storehouse of blank biological samples. Pools of
blank samples were prepared using 20 different post mortem
blood, urine, or hair samples from the Section of Legal
Medicine (Università Politecnica delle Marche, Ancona, Italy),
pre-screened for the presence of any drug of abuse and
pharmaceutical. Postmortem blood, urine, and hair specimens
from authentic cases of consumption were provided as discarded
material by the Institute of Forensic Medicine of Strasbourg
(France), and the Department of Medical and Health Sciences,
Division of Drug Research of Linköping University (Sweden).
Demographics, detection of other drugs, and cause of death were
not specified.

Sample Preparation
Blood samples (100 µL) were fortified with 5 µL IS working
solution, 70 µL M3 R© reagent (acidic aqueous buffer
Busardò et al., 2017; Grabenauer et al., 2018), and 500 µL
acetone:acetonitrile 8:2 (v/v) in polypropylene microcentrifuge
tubes. Tubes were capped, vortexed for 10 s, and centrifuged at
15,000 g for 5min. Supernatants were transferred onto conical
glass tubes and evaporated to dryness under nitrogen at 45◦C.
Samples were reconstituted with 1mL mobile phase A:B 95:5
(v/v) and centrifuged at 15,000 g for 5min. Supernatants were
transferred into autosampler glass vials, prior to injection onto
the chromatographic system.

Urine samples (100 µL) were fortified with 5 µL IS working
solution in conical glass tubes and vortexed. After adding 3mL
mobile phase A:B 95:5 (v/v), tubes were capped, vortexed for
10 s, and centrifuged at 15,000 g for 5min. Supernatant was

transferred into autosampler glass vials, prior to injection onto
the chromatographic system.

Hair samples were washed twice with dichloromethane and
dried under nitrogen at 45◦C. An amount of 25mg was cut
into pieces (<5mm) in glass tubes and fortified with 5 µL IS
working solution. After addition of 500 µL M3 R© reagent, tubes
were capped and incubated at 100◦C for 1 h, for complete hair
digestion. Tubes were cooled down at room temperature and
samples underwent solid phase extraction on 30mg/1mLOasis R©

PRIME HLB cartridges (Waters R©): samples were diluted with
0.5mL M3 R© reagent and loaded onto the cartridges; cartridges
were then washed with 0.5mL Comedical R© Washing Solution
and dried under nitrogen; elution was performed with 0.5mL
Multimatrix Eluent. Eluates were diluted with 9.5mL water
and 1mL was transferred into autosampler glass vials, prior to
injection onto the chromatographic system.

Instrumentation
UHPLC-MS/MS analysis was performed on a Waters R© Xevo R©

TQ-S micro mass spectrometer (triple quadrupole) equipped
with an electrospray ionization source in positive ion mode
(ESI+) and interfaced with an ACQUITY UPLC R© I-Class
(Waters R©; Milano, Italy). Data were acquired with MassLynx R©

software version 4.1 (Waters R©).
Separation was performed on an ACQUITY UPLC R© BEH

C18 column from Waters R© (length: 50mm, internal diameter:
2.1mm, particle size: 1.7µm). Run time was 8min with
a gradient mobile phase composed of 0.1% formic acid in
5mM ammonium acetate buffer (A) and 0.05% formic acid in
acetonitrile (B) at a flow rate of 0.35 mL/min. Initial conditions
were 5% B, held for 1min, increased to 30% B within 3.5min,
increased to 95% B within 0.5min, held for 0.5min, returned
5% B within 0.1min, and then held for 2.4min. LC flow was
directed to waste the first 1.5min of the separation and after
6min. Autosampler and column oven temperatures were 10 and
50◦C, respectively. The injection volume was 10µL for blood and
urine samples, 1 µL for hair samples.

The mass spectrometer operated in scheduled multiple
reaction monitoring (MRM) mode, with two transitions for
each analyte and one transition for each IS (Table 1). MS
parameter settings were optimized by infusing neat standards
individually in methanol and ramping cone voltage and collision
energy (Table 1). Scan speed (dwell time) was adjusted in
the chromatographic conditions of the analysis to produce
15 to 20 scans per chromatographic peak. ESI+ conditions
were optimized as follows: capillary voltage = 0.5 kV, source
temperature = 150◦C, desolvation temperature = 650◦C, cone
gas flow rate= 20 L/h, desolvation gas flow rate= 1,200 L/h.

Method Validation
The method was validated in whole blood, urine, and hair
following the most recent criteria for method development and
validation in analytical toxicology (Peters et al., 2018; Wille
et al., 2018). Working ranges were LOQ−100 µg/L in blood and
urine, and LOQ−100 ng/g in hair, for all analytes. Selectivity,
linearity, sensitivity (limits of detection and quantification),
accuracy, precision, and carryover were calculated using five
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TABLE 1 | Mass spectrometry parameters for analytes and internal standards. Scan speed (dwell time) and detection windows were adjusted accordingly.

Compound IS Cone voltage (V) Q1 mass (m/z) Quantification transition Confirmation transition RT (min)

Q3 mass

(m/z)

CE

(eV)

Q3 mass

(m/z)

CE

(eV)

Acetyl norfentanyl-D5 (A-D5) - 25 224.2 84.0 18 - - 2.23

Fentanyl-D5 (F-D5) - 25 342.2 105.2 38 - - 4.76

Acetylfentanyl A-D5 25 322.2 188.0 20 105.0 36 4.18

Acetyl norfentanyl A-D5 25 219.2 84.1 18 55.2 36 2.28

Alfentanil F-D5 24 417.1 268.1 16 197.1 26 4.80

Butyrylfentanyl F-D5 30 351.2 105.0 40 188.1 22 5.11

Butyrylfentanyl carboxy metabolite F-D5 25 381.2 105.0 42 188.0 30 4.05

Butyryl norfentanyl A-D5 25 247.1 84.2 20 55.3 36 3.80

Carfentanil F-D5 22 395.2 113.0 32 335.0 16 5.08

Cyclopropylfentanyl F-D5 25 349.2 105.0 36 188.1 20 4.97

Cyclopropyl norfentanyl F-D5 25 245.2 84.1 36 177.1 20 3.41

Despropionylfentanyl (4-ANPP) F-D5 22 281.2 105.0 32 188.0 14 4.77

Despropionyl para-fluorofentanyl F-D5 15 299.1 105.0 38 188.1 16 4.89

Fentanyl F-D5 25 337.2 188.2 30 105.2 38 4.75

Furanylfentanyl F-D5 16 375.1 188.0 18 105.0 38 4.87

Furanyl norfentanyl A-D5 16 271.0 84.2 18 55.1 38 3.24

Furanylethyl fentanyl F-D5 25 327.2 95.1 35 178.1 16 4.18

β-Hydroxyfentanyl F-D5 25 389.2 111.0 38 238.0 16 5.15

β-Hydroxythiofentanyl F-D5 25 359.2 192.0 22 111.0 38 4.12

Methoxyacetylfentanyl A-D5 25 353.3 188.1 20 105.0 38 4.07

Methoxyacetyl norfentanyl A-D5 15 249.0 84.1 14 55.0 38 2.19

Norfentanyl F-D5 25 233.1 84.3 20 55.3 34 3.10

Phenylacetyl fentanyl A-D5 46 399.3 105.1 44 188.1 24 5.19

Sufentanil F-D5 16 387.2 111.0 38 238.1 18 5.15

Valerylfentanyl carboxy metabolite F-D5 40 395.3 105.3 44 188.1 26 4.17

CE, collision energy; IS, internal standard; RT, retention time.

different daily replicates of calibration points (five points for
each calibration curve, including the limit of quantification
as the lowest point) and five replicates of QC samples (low
QC = 0.01 µg/L, medium QC = 10 µg/L, and high QC = 80
µg/L in blood and urine; low QC = 0.01 ng/g, medium
QC = 10 ng/g, and high QC = 80 ng/g in hair) along three
subsequent working days, as previously described. Analytical
recovery and matrix effect (ME) were determined using the
experimental design proposed by Matuszewski et al. (2003):
set 1 was composed of 5 replicates of analytes diluted in the
mobile phase (low, medium, and high QC concentrations);
sets 2 and 3 were composed of 5 replicates of pooled blank
samples fortified with analytes after and before extraction,
respectively (low, medium, and high QC concentrations); for
each analyte and concentration, ME was calculated by dividing
mean peak areas of set 2 by set 1, and recovery was calculated
by dividing mean peak areas of set 3 by set 2. Dilution integrity
was tested for over-the-curve samples with a concentration
10 and 50 times higher than the highest calibrators, with a
dilution in mobile phase A:B 95:5 (v/v) before sample treatment.
Calibration points and QC samples were prepared by two
different staff members.

RESULTS

A chromatogram of blood, urine, and hair samples fortified with
the analytes at the LOQ and their ISs is displayed in Figures 1–3.
Validation parameters in human whole blood, urine, and hair
are reported in Tables 2–4, respectively. No additional peaks
due to endogenous substances that could have interfered with
the detection of the analytes and ISs were observed. Limits of
detection (LOD) ranged from 0.7 to 2 ng/L in blood and urine,
and from 3 to 7 pg/g in hair. Limits of quantification (LOQ)
ranged from 2 to 6 ng/L in blood and urine, and from 11 to
21 pg/g in hair; accuracy and precision were within ±20% of
target at the LOQ. Recoveries ranged from 70.7 to 95.7% in
blood, from 74.9 to 97.3% in urine, and from 74.3 to 95.7%
in hair. No significant ion suppression (<10% analytical signal
suppression with CV between 0.2 and 0.9%) due to ME occurred
during chromatographic runs. All QCs quantified within ±15%
of target for accuracy and intra- and inter-assay precision. Sample
contamination by carryover was not observed for any of the
23 analytes. Diluted over-the-curve samples well-fitted into the
calibration curves with precision and accuracy (within ±15%
of target).
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FIGURE 1 | LC-MS/MS chromatogram of a whole blood sample fortified with the analytes at the limit of quantification and their ISs. 1, methoxyacetyl norfentanyl; 2,

acetyl norfentanyl; 3, acetyl norfentanyl-D5; 4, norfentanyl; 5, furanyl norfentanyl; 6, cyclopropyl norfentanyl; 7, butyryl norfentanyl; 8, butyrylfentanyl carboxy

metabolite; 9, methoxyacetylfentanyl; 10, β-hydroxythiofentanyl; 11, valerylfentanyl carboxy metabolite; 12, furanylethyl fentanyl; 13, acetylfentanyl; 14, fentanyl; 15,

fentanyl-D5; 16, despropionylfentanyl (4-ANPP); 17, alfentanil; 18, furanylfentanyl; 19, despropionyl para-fluorofentanyl; 20, cyclopropylfentanyl; 21, carfentanil; 22,

butyrylfentanyl; 23, sufentanil; 24, β-hydroxyfentanyl; 25, phenylacetyl fentanyl.

Fentanyl analogs’ concentrations measured in authentic
human specimens are reported in Table 5. Samples from 27
cases tested positive for fentanyls or analogs. Samples from 13
cases tested positive for 4-ANPP; average blood concentration
(± standard deviation, SD) was 3.13 ± 2.37 µg/L (n = 9);
average urine concentration was 50.5 ± 50.9 µg/L (n = 10);
average hair concentration was 10.8 ± 0.57 ng/g (n = 2).
Samples from 12 cases tested positive for cyclopropylfentanyl
and cyclopropyl norfentanyl; average blood concentrations were
7.84 ± 7.21 and 30.0 ± 18.0 µg/L, respectively (n = 8); average
urine concentrations were 47.7 ± 39.3 and 417 ± 296 µg/L,
respectively (n = 11). Samples from 8 cases tested positive for
fentanyl and norfentanyl and one case for norfentanyl only;
blood concentrations were 33.7 and 7.17 µg/L, respectively
(n = 1); average urine concentrations were 146 ± 318 and
300 ± 710 µg/L, respectively (n = 5 and 6, respectively);
average hair concentrations were 2,670 ± 184 and 82.1 ±

94.7 ng/g, respectively (n = 2). Samples from 5 cases tested
positive for acetylfentanyl and acetyl norfentanyl; average blood
concentrations were 40.2 ± 38.6 and 44.5 ± 21.1 µg/L,
respectively (n = 3); average urine concentrations were 1,874
± 1,710 and 6,582 ± 3,252 µg/L, respectively (n = 5). Samples
from 4 cases tested positive for methoxyacetylfentanyl; average
blood concentration was 4.08 ± 2.30 µg/L (n = 4); average
urine concentration was 995 ± 908 µg/L (n = 3). One sample
tested positive for furanylfentanyl and furanyl norfentanyl; blood

concentrations were 3.60 and 0.90 µg/L, respectively; urine
concentrations were 84.0 and 23.0µg/L, respectively. One sample
tested positive for sufentanil; blood concentration was 0.67 µg/L.

DISCUSSION

Method
To cope with the emerging threat of the new synthetic opioids,
several methods for detecting fentanyl and analogs in biological
samples were published. The methods developed to detect new
synthetic opioids in biological and non-biological matrices were
recently reviewed (Gerace et al., 2018; Marchei et al., 2018).
Several methods to quantify fentanyl and analogs in blood,
urine, and hair were also published. In 2006, Wang and Bernert,
developed a method for quantifying 13 fentanyl analogs in
urine. The method consisted in a 21-min LC-MS/MS analysis
on a C18 column, following an automated solid phase extraction
(0.5mL urine) with C18 cartridges. The method was successfully
validated for 8 analogs with acceptable accuracy and precision;
LODs ranged from 00.003 to 0.07 µg/L and LOQs were 0.01
µg/L; recoveries ranged from 64 to 114% and ME ranged from
11 to 96% (Wang and Bernert, 2006). In 2009, Gergov et al.
validated a method for quantifying 9 fentanyl analogs, along 16
other opioids, in whole blood and urine. Samples (1mL) were
prepared with a liquid-liquid extraction in basic conditions, and
the extracts were analyzed by LC-MS/MS with a separation on
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FIGURE 2 | LC-MS/MS chromatogram of a urine sample fortified with the analytes at the limit of quantification and their ISs. 1, methoxyacetyl norfentanyl; 2, acetyl

norfentanyl; 3, acetyl norfentanyl-D5; 4, norfentanyl; 5, furanyl norfentanyl; 6, cyclopropyl norfentanyl; 7, butyryl norfentanyl; 8, butyrylfentanyl carboxy metabolite; 9,

methoxyacetylfentanyl; 10, β-hydroxythiofentanyl; 11, valerylfentanyl carboxy metabolite; 12, furanylethyl fentanyl; 13, acetylfentanyl; 14, fentanyl; 15, fentanyl-D5; 16,

despropionylfentanyl (4-ANPP); 17, alfentanil; 18, furanylfentanyl; 19, despropionyl para-fluorofentanyl; 20, cyclopropylfentanyl; 21, carfentanil; 22, butyrylfentanyl; 23,

sufentanil; 24, β-hydroxyfentanyl; 25, phenylacetyl fentanyl.

a C18 column in 33min. LODs ranged from 0.01–1 to 0.01–2
µg/L in blood and urine, respectively, and LOQs ranged from
0.03 to 7 in both matrices; no significant ion suppression was
measured, except for norfentanyl (-31%) (Gergov et al., 2009).
In 2018, Shoff et al. developed a screening for detecting 14
fentanyl analogs, along with 30 other opioid-related compounds,
in whole blood and urine (no quantification). Samples (1mL)
were prepared with a solid phase extraction with mixed C8-ion
exchange cartridges (CLEAN SCREEN R© from United Chemical
Technologies), and the extracts were analyzed by LC-MS/MS
with an 11min separation on a C18 column and a data-dependent
acquisition. The method was validated for 10 analogs with
insufficient sensitivity for several analytes (LODs ranged from 0.1
to 0.5 µg/L in blood) (Shoff et al., 2017). In 2018, Noble et al.
developed another screening for detecting 13 fentanyl analogs in
whole blood (no quantification). Sample preparation consisted
in a simple protein precipitation in acetonitrile and the extracts
were analyzed by high-resolution LC-MS/MS with a 15min
separation on a C18 column and a data-independent acquisition.
The method was validated with 81–98% recoveries and <34%
ME, but with a low sensitivity (LODs ranged from 5 to 10 µg/kg)
(Noble et al., 2018). Again in 2018, Fogarty et al. developed
a method for quantifying 19 fentanyl analogs in whole blood.
Similarly to previously published methods, samples (0.5mL)
were prepared by solid phase extraction on CLEAN SCREEN R©

cartridges and the extracts were analyzed by LC-MS/MS with
a separation on a C18 column in 19min. Except for 2 analogs,
the method was validated with a 0.1–100 µg/L dynamic range
(LOD were not measured) (Fogarty et al., 2018). Moody et al.
published a method for quantifying 19 fentanyl analogs in whole
blood, and detecting 17 analogs in urine (no quantification).
Sample preparation was a protein precipitation of blood and
urine specimens (0.5mL) in acetonitrile, followed by a solid
phase extraction on cation exchange cartridges; the extracts were
analyzed by LC-MS/MS with a short 6-min separation on a C18

column. In blood, LODs and LOQs ranged from 0.0125–0.25
to 0.05–0.5 µg/L, respectively; recoveries were higher than 56%
and ME were <33.4% (Moody et al., 2018). Recently, Strayer
et al. validated a method for quantifying 24 fentanyl analogs in
whole blood. Samples (1mL) were prepared with a solid phase
extraction on CLEAN SCREEN R© cartridges, and the extracts
were analyzed by LC-MS/MS with a separation a biphenyl
column in 13.5min. A total of 13 analogs were successfully
validated with accurate and precise results; LODs and LOQs
ranged from 0.016–0.1 to 0.1–0.5 µg/L, respectively; recoveries
ranged from 38–140, 33–96, and 91–97% at a low, medium,
and high concentration, respectively; ME ranged from 57.3–
117.5, 71.85–125, and 47.72–111.89%, respectively (Strayer et al.,
2018). Salomone et al. proposed the first method dedicated to the
quantification of fentanyl analogs in hair (10 analogs and 3 other
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FIGURE 3 | LC-MS/MS chromatogram of a hair sample fortified with the analytes at the limit of quantification and their ISs. 1, methoxyacetyl norfentanyl; 2, acetyl

norfentanyl; 3, acetyl norfentanyl-D5; 4, norfentanyl; 5, furanyl norfentanyl; 6, cyclopropyl norfentanyl; 7, butyryl norfentanyl; 8, butyrylfentanyl carboxy metabolite; 9,

methoxyacetylfentanyl; 10, β-hydroxythiofentanyl; 11, valerylfentanyl carboxy metabolite; 12, furanylethyl fentanyl; 13, acetylfentanyl; 14, fentanyl; 15, fentanyl-D5; 16,

despropionylfentanyl (4-ANPP); 17, alfentanil; 18, furanylfentanyl; 19, despropionyl para-fluorofentanyl; 20, cyclopropylfentanyl; 21, carfentanil; 22, butyrylfentanyl; 23,

sufentanil; 24, β-hydroxyfentanyl; 25, phenylacetyl fentanyl.

opioids). The method duration was short, with an extraction
consisting of a simple incubation of 25mg hair in methanol
at 55◦C, and a 6min LC-MS/MS separation on a C18 column.
LODs ranged from 0.1 to 0.3 ng/g and LOQs ranged from 0.3 to
0.9 ng/g; recoveries ranged from 71 to 112% and matrix effects
ranged from 69 to 111% (Salomone et al., 2018).

We developed and validated an LC-MS/MS method for
quantifying fentanyl and 22 analogs and metabolites in
human whole blood, urine, and hair. Fentanyl analogs and
their metabolites were included in the method depending on
the current drug trends, the scientific literature (Feierman
and Lasker, 1996; Tateishi et al., 1996; Labroo et al., 1997;
Goggin et al., 2017; Watanabe et al., 2017; Concheiro et al.,
2018; Kanamori et al., 2018a,b), and their commercial
availability. To the best of our knowledge, we report
the first method for quantifying cyclopropyl norfentanyl,
furanylethyl fentanyl, methoxyacetyl norfentanyl, phenylacetyl
fentanyl, and valeryl fentanyl carboxy metabolite in
biological samples; despropionyl para-fluorofentanyl and
β-hydroxyfentanyl in urine; and acetyl norfentanyl, carfentanil,
cyclopropylfentanyl, despropionyl para-fluorofentanyl, furanyl
norfentanyl, β-hydroxyfentanyl, β-hydroxythiofentanyl, and
methoxyacetylfentanyl in hair. In addition, this is the most
comprehensive method for quantifying fentanyl and analogs in
blood, urine, and hair. The capillary voltage was low compared
to traditional LC-MS methods (0.5 kV), but higher voltages

did not provide a better signal so we opted for a low voltage
to limit unwanted side reactions and preserve the source. The
same capillary voltage was used in other published methods
for quantifying fentanyl and analogs in blood and urine, using
Waters R© technology (Wang and Bernert, 2006; Fogarty et al.,
2018; Moody et al., 2018). Matching deuterated ISs could not be
purchased for every analyte, but the method was optimized to
avoid any significant matrix effect that could have affected the
accuracy and the precision of the results. The analytical recovery
of several analytes was affected to a limited extent, which also
impacted the LODs and LOQs. However, the sensitivity was
higher than that of previously published methods for quantifying
fentanyl analogs (Wang and Bernert, 2006; Gergov et al., 2009;
Shoff et al., 2017; Fogarty et al., 2018; Moody et al., 2018; Noble
et al., 2018; Salomone et al., 2018; Strayer et al., 2018), which
is essential for the detection of these compounds, considering
their potency and low active concentrations (Concheiro et al.,
2018). Although the method duration was short compared to
other previously published methods (6–33min), ME were lower
(Wang and Bernert, 2006; Moody et al., 2018; Noble et al., 2018;
Salomone et al., 2018; Strayer et al., 2018). Recoveries were
similar to other methods (Wang and Bernert, 2006; Moody et al.,
2018; Noble et al., 2018; Salomone et al., 2018; Strayer et al.,
2018), but the extraction was simpler, as most of the methods
used a time-consuming solid phase extraction in blood (Shoff
et al., 2017; Fogarty et al., 2018; Moody et al., 2018; Strayer et al.,
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TABLE 2 | Validation parameters for fentanyl and analogs in whole blood.

Compound Determination

coefficient (r2)

LOD

(µg/L)

LOQ

(µg/L)

Accuracy

(% error)

Intra-assay precision

(% CV)

Inter-assay precision

(% CV)

Recovery

(%)

n = 15

Matrix

effect

(%)

n = 15
Low

n = 15

Mid

n = 15

High

n = 15

Low

n = 15

Mid

n = 15

High

n = 15

Low

n = 15

Mid

n = 15

High

n = 15

Acetylfentanyl 0.997 ± 0.004 0.001 0.003 12.2 9.6 9.7 12.9 11.2 10.7 11.9 9.2 9.6 85.2 91.1

Acetyl norfentanyl 0.998 ± 0.002 0.001 0.004 13.1 8.1 7.5 12.8 7.0 7.4 12.3 5.8 9.5 91.3 92.3

Alfentanil 0.997 ± 0.002 0.001 0.003 10.5 7.6 9.5 10.9 7.2 10.8 11.4 10.4 11.5 88.3 90.7

Butyrylfentanyl 0.994 ± 0.003 0.001 0.004 11.2 7.8 8.2 10.9 10.8 8.9 11.6 11.1 8.8 90.6 92.2

Butyrylfentanyl carboxy

metabolite

0.998 ± 0.006 0.002 0.005 12.5 12.8 7.4 12.2 9.4 10.9 12.9 9.1 9.2 86.9 90.8

Butyryl norfentanyl 0.999 ± 0.001 0.001 0.003 12.6 5.5 3.8 10.4 8.1 9.8 10.7 8.9 10.1 90.7 91.1

Carfentanil 0.998 ± 0.002 0.002 0.005 13.0 8.3 5.9 11.7 11.5 10.9 12.2 8.2 10.9 90.3 90.5

Cyclopropylfentanyl 0.997 ± 0.002 0.001 0.004 13.6 9.2 10.2 12.1 7.3 8.6 12.8 9.3 11.5 93.3 91.3

Cyclopropyl norfentanyl 0.996 ± 0.005 0.001 0.004 10.1 5.2 8.8 10.4 10.0 7.9 12.3 9.4 8.7 95.7 90.8

Despropionylfentanyl

(4-ANPP)

0.996 ± 0.005 0.001 0.003 10.6 7.7 7.2 11.5 9.8 9.3 13.4 9.5 10.9 70.7 91.2

Despropionyl

para-fluorofentanyl

0.996 ± 0.003 0.002 0.005 11.5 8.3 6.8 12.3 4.4 8.0 12.9 9.0 73.0 87.6 91.7

Fentanyl 0.998 ± 0.001 0.001 0.003 13.9 9.2 8.7 12.6 5.7 8.3 12.8 7.1 7.8 92.1 90.9

Furanylfentanyl 0.996 ± 0.002 0.001 0.005 10.7 8.7 8.2 13.5 10.8 9.6 12.5 9.3 10.2 74.7 91.5

Furanyl norfentanyl 0.992 ± 0.004 0.001 0.004 12.6 8.5 5.0 14.2 11.0 3.5 11.5 13.2 9.8 95.2 90.4

Furanylethyl fentanyl 0.991 ± 0.003 0.001 0.004 11.8 5.9 7.7 14.0 10.5 9.4 11.7 11.5 8.5 90.9 90.3

β-Hydroxyfentanyl 0.990 ± 0.002 0.002 0.005 11.2 11.9 10.1 12.1 11.2 13.6 11.9 8.9 7.5 88.5 90.4

β-Hydroxythiofentanyl 0.994 ± 0.004 0.002 0.006 13.6 13.1 10.2 12.3 9.4 8.3 12.7 10.2 11.7 90.2 90.6

Methoxyacetylfentanyl 0.997 ± 0.002 0.002 0.005 11.8 12.3 7.4 11.9 9.7 5.4 12.6 10.0 9.1 80.3 90.5

Methoxyacetyl

norfentanyl

0.996 ± 0.002 0.001 0.003 12.1 12.3 7.4 12.6 9.7 5.4 12.8 10.0 9.1 80.3 90.3

Norfentanyl 0.995 ± 0.003 0.0007 0.002 12.5 7.5 6.3 12.8 12.6 8.8 13.2 13.4 11.1 85.8 90.6

Phenylacetyl fentanyl 0.990 ± 0.004 0.0007 0.002 10.1 7.2 6.8 11.9 9.0 7.9 11.9 9.4 7.7 90.7 91.1

Sufentanil 0.995 ± 0.003 0.001 0.003 12.4 5.6 8.9 12.6 9.3 7.1 12.4 10.6 11.7 88.4 91.0

Valerylfentanyl carboxy

metabolite

0.997 ± 0.002 0.002 0.005 12.7 9.2 10.3 13.2 7.2 8.6 11.2 9.3 11.5 93.3 90.8

Low, medium, and high quality control working solutions contained all standards at 0.01, 10, and 80 µg/L, respectively.

Analytical recovery and matrix effect are displayed as an average of low, medium, and high quality control concentrations values.

CV, coefficient of variation; LOD, limit of detection; LOQ, limit of quantification.

2018) and urine (Wang and Bernert, 2006; Shoff et al., 2017).
The hair extraction (simple incubation in methanol) and the
LC-MS/MS duration (6min) were shorter in the method of
Salomone et al. (2018), but our method allows the quantification
of more fentanyl analogs with higher sensitivity and lower
matrix effects.

Authentic Specimens
We detected fentanyl and analogs in 42 samples from
27 postmortem cases. To the best of our knowledge, this
is the first report of cyclopropyl norfentanyl and furanyl
norfentanyl concentrations in blood and urine specimens.
Cyclopropylfentanyl was the most prevalent substance (n = 12),
although the drug has been on the drug market for only 2 years
(EMCDDA, 2018a), followed by fentanyl (n = 9), acetylfentanyl
(n = 5), methoxyacetylfentanyl (n = 4), furanylfentanyl (n = 1),
and sufentanil (n = 1); the other detected substances were

metabolites. Drugs were mostly taken alone, although co-
consumption of fentanyl and acetylfentanyl was frequent (n= 4).
Demographics, co-administration of drugs, and cause of death
were not specified. Moreover, fentanyl is subject to extensive
postmortem redistribution (Brockbals et al., 2018) and the same
may apply to its analogs, which limits the interpretation of
our results.

Dealkylation is often a major metabolism pathway of
fentanyl analogs, making nor-metabolites good biomarkers of
consumption (Concheiro et al., 2018): acetyl norfentanyl and
norfentanyl are major metabolites of acetylfentanyl (Watanabe
et al., 2017; Kanamori et al., 2018a,b), fentanyl (Feierman
and Lasker, 1996; Tateishi et al., 1996; Labroo et al., 1997),
respectively, and furanyl norfentanyl is a minor metabolite of
furanylfentanyl (Goggin et al., 2017). In our study, acetylfentanyl
and fentanyl concentrations were higher than those of their nor-
metabolites in blood and urine samples, with a few exceptions,
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TABLE 3 | Validation parameters for fentanyl and analogs in urine.

Compound Determination

coefficient (r2)

LOD

(µg/L)

LOQ

(µg/L)

Accuracy

(% error)

Intra-assay precision

(% CV)

Inter-assay precision

(% CV)

Recovery

(%)

n = 15

Matrix

effect

(%)

n = 15
Low

n = 15

Mid

n = 15

High

n = 15

Low

n = 15

Mid

n = 15

High

n = 15

Low

n = 15

Mid

n = 15

High

n = 15

Acetylfentanyl 0.998 ± 0.006 0.001 0.003 10.2 11.6 10.7 9.9 8.0 10.7 12.9 9.2 7.6 86.2 90.1

Acetyl norfentanyl 0.997 ± 0.004 0.001 0.004 13.2 9.1 7.5 11.2 6.0 6.4 12.3 10.8 9.5 95.3 92.0

Alfentanil 0.998 ± 0.010 0.001 0.003 10.1 7.6 7.5 11.8 11.2 9.8 10.9 11.4 9.5 80.3 90.2

Butyrylfentanyl 0.991 ± 0.001 0.001 0.004 10.7 7.8 9.2 11.8 8.8 8.9 11.0 11.1 13.8 90.6 90.2

Butyrylfentanyl carboxy

metabolite

0.993 ± 0.002 0.002 0.005 11.4 10.8 11.4 11.7 12.4 11.9 11.3 7.1 8.2 86.9 90.7

Butyryl norfentanyl 0.998 ± 0.002 0.001 0.003 10.2 8.5 4.8 10.9 11.1 8.8 12.1 10.9 8.1 88.7 91.3

Carfentanil 0.995 ± 0.004 0.002 0.005 10.9 11.3 8.9 11.7 10.5 7.9 12.2 10.2 9.9 90.3 90.2

Cyclopropylfentanyl 0.997 ± 0.002 0.001 0.004 12.4 9.2 10.2 12.2 7.3 8.6 12.4 9.3 11.5 93.3 91.1

Cyclopropyl norfentanyl 0.996 ± 0.005 0.001 0.004 10.2 5.2 8.8 11.0 10.0 7.9 12.8 9.4 8.7 95.7 90.4

Despropionylfentanyl

(4-ANPP)

0.994 ± 0.005 0.001 0.003 10.7 7.7 5.2 11.9 9.8 11.3 10.6 7.5 4.9 91.7 90.2

Despropionyl

para-fluorofentanyl

0.994 ± 0.001 0.002 0.005 11.8 9.8 7.8 10.5 4.4 6.0 12.3 3.0 4.3 90.6 91.2

Fentanyl 0.995 ± 0.006 0.001 0.003 12.7 10.2 12.7 11.2 7.7 9.3 12.5 9.1 8.8 90.1 90.1

Furanylfentanyl 0.994 ± 0.002 0.001 0.003 10.8 8.7 8.2 11.4 10.6 9.8 12.8 10.3 10.2 74.9 90.5

Furanyl norfentanyl 0.995 ± 0.005 0.001 0.004 11.9 9.5 7.0 12.4 11.0 8.5 13.9 14.2 9.8 93.2 90.7

Furanylethyl fentanyl 0.997 ± 0.005 0.001 0.004 12.1 5.9 6.7 12.3 10.5 11.4 10.4 8.5 7.5 89.9 90.3

β-Hydroxyfentanyl 0.994 ± 0.003 0.002 0.005 10.4 7.9 8.1 12.3 8.2 11.6 10.9 8.9 7.5 88.5 90.6

β-Hydroxythiofentanyl 0.995 ± 0.003 0.002 0.006 11.2 12.1 7.2 13.1 11.4 7.3 11.7 5.2 5.7 85.2 90.1

Methoxyacetylfentanyl 0.997 ± 0.002 0.002 0.005 11.7 12.3 7.4 11.3 9.7 5.4 12.2 10.0 9.1 80.3 90.3

Methoxyacetyl

norfentanyl

0.994 ± 0.003 0.001 0.003 12.3 12.3 10.4 12.7 10.7 11.4 14.0 7.0 9.1 80.3 90.2

Norfentanyl 0.995 ± 0.003 0.0007 0.002 12.4 7.5 6.3 12.5 12.6 8.8 10.8 13.4 11.1 85.8 90.1

Phenylacetyl fentanyl 0.993 ± 0.002 0.0007 0.002 10.3 8.2 9.8 12.6 7.0 11.9 10.9 8.4 9.7 91.7 90.4

Sufentanil 0.994 ± 0.002 0.001 0.003 10.7 5.6 4.9 12.1 11.3 8.1 10.5 11.6 12.7 87.4 91.1

Valerylfentanyl carboxy

metabolite

0.996 ± 0.001 0.002 0.005 13.2 11.2 8.3 11.2 11.2 9.6 11.6 8.3 7.5 97.3 90.3

Low, medium, and high quality control working solutions contained all standards at 0.01, 10, and 80 µg/L, respectively.

Analytical recovery and matrix effect are displayed as an average of low, medium, and high quality control concentrations values.

CV, coefficient of variation; LOD, limit of detection; LOQ, limit of quantification.

confirming their suitability as biomarkers of consumption.
Furanyl fentanyl concentration was higher than that of furanyl
norfentanyl in our only case of furanylfentanyl intake (case
#16), which is also consistent with the scientific literature on
furanylfentanyl metabolism (Goggin et al., 2017; Watanabe
et al., 2017) and furanylfentanyl/furanyl norfentanyl detection
in authentic whole blood and urine samples (Goggin et al.,
2017; Strayer et al., 2018), indicating that furanyl norfentanyl
is not a suitable biomarker of furanylfentanyl consumption.
Data on cyclopropylfentanyl and methoxyacetylfentanyl
metabolism are not currently available, and we report the first
method for detecting the two analogs in biological samples.
Cyclopropyl norfentanyl concentration was higher than that
of cyclopropylfentanyl in every blood and urine sample. In
case #12, the two substances were found in urine at a low
concentration but were not detected in blood, pointing toward a
longer delay between drug use and the time of death/sampling.

These results indicate that cyclopropyl norfentanyl may be
an efficient biomarkers of cyclopropylfentanyl consumption.
On the contrary, methoxyacetyl norfentanyl was not detected
when methoxyacetylfentanyl was taken, whether in blood or
urine, indicating that methoxyacetyl norfentanyl is not a suitable
biomarker of methoxyacetylfentanyl consumption.

4-ANPP was the analyte detected in the highest number
of cases (n = 13). This is not surprising, considering that 4-
ANPP is a metabolite of several fentanyl analogs and a well-
known chemical intermediary of fentanyl synthesis by Siegfried
method (DEA, 2010). Consequently, 4-ANPP was detected in all
cases with fentanyl consumption, except for case #25 (urine). 4-
ANPP is a major metabolite of methoxyacetylfentanyl (Mardal
et al., 2018) and furanylfentanyl (Watanabe et al., 2017) and
a minor metabolite of acetylfentanyl (Watanabe et al., 2017),
and was detected in every blood and urine samples when
one of the three analogs was taken. 4-ANPP blood, urine,
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TABLE 4 | Validation parameters for fentanyl and analogs in hair.

Compound Determination

coefficient (r2)

LOD

(ng/g)

LOQ

(ng/g)

Accuracy

(% error)

Intra-assay precision

(% CV)

Inter-assay precision

(% CV)

Recovery

(%)

n = 15

Matrix

effect

(%)

n = 15
Low

n = 15

Mid

n = 15

High

n = 15

Low

n = 15

Mid

n = 15

High

n = 15

Low

n = 15

Mid

n = 15

High

n = 15

Acetylfentanyl 0.992 ± 0.008 0.004 0.012 12.2 8.6 9.7 13.6 11.0 9.7 13.9 10.2 8.6 81.2 90.6

Acetyl norfentanyl 0.994 ± 0.002 0.003 0.011 11.2 7.1 6.5 12.8 5.0 5.4 13.2 6.8 8.5 92.3 91.2

Alfentanil 0.991 ± 0.010 0.005 0.017 10.3 7.6 6.5 10.8 8.2 7.8 12.1 9.4 10.5 84.3 90.4

Butyrylfentanyl 0.995 ± 0.004 0.005 0.015 10.2 6.8 6.2 10.6 7.8 6.9 11.8 8.1 7.8 89.6 90.1

Butyrylfentanyl carboxy

metabolite

0.992 ± 0.001 0.006 0.02 10.7 7.8 6.4 13.5 10.4 8.9 13.9 8.1 7.2 76.9 90.9

Butyryl norfentanyl 0.995 ± 0.001 0.006 0.018 11.2 3.5 2.8 11.8 6.1 7.8 12.5 7.9 9.1 89.7 91.1

Carfentanil 0.993 ± 0.001 0.006 0.019 10.7 5.3 4.9 12.7 8.5 6.9 12.9 9.2 8.9 88.3 90.8

Cyclopropylfentanyl 0.997 ± 0.002 0.006 0.019 12.0 9.2 10.2 10.2 7.3 8.6 7.8 9.3 11.5 93.3 91.0

Cyclopropyl norfentanyl 0.996 ± 0.005 0.006 0.018 10.2 5.2 8.8 10.4 10.0 7.9 12.8 9.4 8.7 95.7 90.3

Despropionylfentanyl

(4-ANPP)

0.991 ± 0.002 0.006 0.018 12.2 5.7 5.2 13.9 11.8 10.3 14.2 10.5 8.9 79.7 90.1

Despropionyl

para-fluorofentanyl

0.997 ± 0.002 0.005 0.015 13.4 9.3 5.8 13.9 3.4 5.0 14.3 5.0 6.3 88.6 91.1

Fentanyl 0.992 ± 0.004 0.003 0.013 12.5 8.2 6.7 10.2 4.7 4.3 11.1 6.1 5.8 89.1 90.7

Furanylfentanyl 0.994 ± 0.002 0.005 0.016 10.5 8.7 8.2 11.5 11.6 9.9 11.8 10.4 10.1 78.9 90.2

Furanyl norfentanyl 0.998 ± 0.004 0.003 0.012 10.7 6.5 6.0 13.6 10.0 4.5 13.0 11.2 10.8 91.2 90.1

Furanylethyl fentanyl 0.994 ± 0.005 0.003 0.014 12.9 4.9 5.7 13.6 9.5 8.4 13.9 10.5 9.5 87.9 90.4

β-Hydroxyfentanyl 0.996 ± 0.002 0.005 0.014 12.3 8.9 9.1 12.6 8.2 7.6 12.8 7.9 6.5 81.5 90.9

β-Hydroxythiofentanyl 0.994 ± 0.001 0.005 0.014 12.7 10.1 8.2 13.2 10.4 9.3 13.7 9.2 8.7 83.2 90.2

Methoxyacetylfentanyl 0.997 ± 0.002 0.005 0.016 12.0 12.3 7.4 10.4 9.7 5.4 11.9 10.0 9.1 80.3 90.5

Methoxyacetyl

norfentanyl

0.997 ± 0.002 0.005 0.016 12.5 10.3 9.4 11.2 8.7 7.4 12.6 9.0 8.1 74.3 90.5

Norfentanyl 0.991 ± 0.002 0.005 0.015 12.4 8.5 8.3 12.5 10.6 9.8 12.8 10.4 10.1 88.8 90.8

Phenylacetyl fentanyl 0.992 ± 0.004 0.005 0.015 11.1 6.2 5.8 10.9 8.0 6.9 12.1 7.4 6.7 92.7 90.5

Sufentanil 0.992 ± 0.002 0.006 0.019 10.5 4.6 3.9 10.9 7.3 6.1 11.2 8.6 9.7 85.4 91.3

Valerylfentanyl carboxy

metabolite

0.994 ± 0.001 0.007 0.021 11.4 10.2 9.3 10.9 8.2 7.6 11.4 7.3 6.5 94.3 90.8

Low, medium, and high quality control working solutions contained all standards at 0.01, 10, and 80 ng/g, respectively.

Analytical recovery and matrix effect are displayed as an average of low, medium, and high quality control concentrations values.

CV, coefficient of variation; LOD, limit of detection; LOQ, limit of quantification.

and hair concentrations were lower than those of fentanyl,
methoxyacetylfentanyl, acetylfentanyl, and their nor-metabolites
when one of the three analogs was taken alone, making it an
inefficient and non-specific marker of consumption. However, 4-
ANPP blood and urine concentrations were higher than those
of furanylfentanyl and furanyl norfentanyl in our only case
of furanyl intake (case #16), as described in previous cases
(Goggin et al., 2017; Martucci et al., 2018). Consequently,
although it is not specific of furanylfentanyl intake, 4-ANPP may
be a better marker than furanyl norfentanyl for documenting
furanylfentanyl intake.

The concentration of fentanyl and analogs in urine was always
higher than that of blood, when the two matrices were available
for the same subject: the elimination of fentanyl analogs and
their metabolites in urine appears to be significant, making urine
a matrix of choice for documenting consumption in clinical

or forensic toxicology. As expected, fentanyl concentration

was higher than that of norfentanyl and 4-ANPP in hair, as

hair usually contains a high parent drug to metabolite ratio
(Tzatzarakis et al., 2017).

CONCLUSION

We developed the most comprehensive method for quantifying
fentanyl analogs and metabolites in human whole blood, urine,
and hair, for clinical and forensic applications. The method
is simple and fast, allowing automation and high-throughput
testing, and was validated in the three matrices with a high
sensitivity for all the analytes. This is the first reported method
for quantifying cyclopropyl norfentanyl, furanylethyl fentanyl,
methoxyacetyl norfentanyl, phenylacetyl fentanyl, and valeryl
fentanyl carboxy metabolite in biological samples.

The method was applied to authentic blood, urine, and
hair postmortem samples, and 42 tested positive (27 different
cases). Cyclopropylfentanyl was the most prevalent analog;
acetylfentanyl, fentanyl, furanylfentanyl, methoxyacetylfentanyl,
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TABLE 5 | Fentanyl and analogs’ concentration measured in authentic specimens.

Sample

ID

Matrix Cyclopropyl-

fentanyl

Cyclopropyl

norfentanyl

Methoxy-

acetylfentanyl

Furanyl-

fentanyl

Furanyl

norfentanyl

Sufentanil Acetyl-

fentanyl

Acetyl

norfentanyl

4-ANPP Fentanyl Norfentanyl

#1 U 11.7 117 – – – – – – – – –

#2 B 4.50 5.00 – – – – – – – – –

U 105 239 – – – – – – – – –

#3 U 7.37 343 – – – – – – – – –

#4 B 3.05 54.2 – – – – – – – – –

U 19.7 381 – – – – – – – – –

#5 B 6.60 9.93 – – – – – – – – –

U 81.4 126 – – – – – – – – –

#6 B 21.7 42.5 – – – – – – – – –

U 105 896 – – – – – – – – –

#7 B 16.2 48.2 – – – – – – – – –

U 38.2 405 – – – – – – – – –

#8 B 0.80 22.3 – – – – – – – – –

U 28.3 829 – – – – – – – – –

#9 U 85.0 517 – – – – – – – – –

#10 B 5.12 21.9 – – – – – – – – –

#11 B 4.75 35.7 1.09 – – – – – 0.21 – –

U 41.8 720 173 – – – – – 5.56 – –

#12 B – – – – – – – – – – –

U 1.55 16.3 – – – – – – – – –

#13 B – – 4.43 – – – – – 3.80 – –

U – – 843 – – – – – 39.0 – –

#14 B – – 4.11 – – – – – 3.57 – –

U – – 1,970 – – – – – 27.2 – –

#15 B – – 6.69 – – – – – 4.57 – –

U – – – – – – – – 1.58 – –

#16 B – – – 3.60 0.90 – – – 7.69 – –

U – – – 84.0 23.0 – – – 126 – –

#17 B – – – – – 0.67 – – – – –

#18 B – – – – – – 84.8 66.7 4.27 – –

U – – – – – – 2,800 8,920 117 0.75 10.9

#19 B – – – – – – 16.0 24.8 1.16 – –

U – – – – – – 2,870 8,360 69.2 0.88 11.9

#20 B – – – – – – 19.9 41.9 2.51 – –

U – – – – – – 61.8 7,730 9.44 – 8.34

#21 B – – – – – – – – 0.43 33.7 7.17

#22 U – – – – – – 3,630 6,990 110 1.23 8.19

#23 U – – – – – – 7.13 909 – – –

#24 U – – – – – – – – 0.16 714 1,750

#25 U – – – – – – – – – 12.0 9.89

#26 H – – – – – – – – 11.2 2,800 149

#27 H – – – – – – – – 10.4 2,540 15.1

Concentration in blood and urine is indicated in µg/L; Concentration in hair is indicated in ng/g. Concentrations are indicated with three significant figures.

B, whole blood; U, urine; H, hair.

sufentanil, and metabolites were also found. Drugs were
mostly taken alone, although co-consumption of fentanyl and
acetylfentanyl was frequent. We report the first concentrations
of cyclopropyl norfentanyl in blood and urine, and the first
concentration of furanyl norfentanyl in blood. Cyclopropyl
norfentanyl proved to be a good marker of cyclopropylfentanyl

intake. On the contrary, methoxyacetyl norfentanyl was not
a suitable marker of methoxyacetylfentanyl consumption.
Similarly, furanyl norfentanyl was a poor biomarker of
furanylfentanyl intake, and 4-ANPP may be more suitable to
document furanylfentanyl consumption, although it is also the
metabolite of several other fentanyl analogs.
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