183 research outputs found

    Electrochemical and impedance characterization of Microbial Fuel Cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation

    Get PDF
    A mixed microbial population naturally presents in seawater was used as active anodic biofilm of two Microbial Fuel Cells (MFCs), employing either a 2D commercial carbon felt or 3D carbon-coated Berl saddles as anode electrodes, with the aim to compare their electrochemical behavior under continuous operation. After an initial increase of the maximum power density, the felt-based cell reduced its performance at 5months (from 7 to 4μWcm(-2)), while the saddle-based MFC exceeds 9μWcm(-2) (after 2months) and maintained such performance for all the tests. Electrochemical impedance spectroscopy was used to identify the MFCs controlling losses and indicates that the mass-transport limitations at the biofilm-electrolyte interface have the main contribution (>95%) to their internal resistance. The activation resistance was one order of magnitude lower with the Berl saddles than with carbon felt, suggesting an enhanced charge-transfer in the high surface-area 3D electrode, due to an increase in bacteria population growth

    Modeling of the dye loading time influence on the electrical impedance of a dye-sensitized solar cell

    Get PDF
    A hemisquaraine dye molecule (CT1) was used as TiO2 sensitizer. The influence of the dye-adsorption time on the electrical impedance of a CT1-based dye-sensitized solar cell (DSC) was analyzed. Differently from what we observed with commercial Ru dye-based DSC, a non-monotonic effect of the impregnation time on the impedance has been found and the dye loading time is much reduced, a desirable outcome in economic grounds. This feature is analyzed in terms of the dye molecules tendency to aggregate close to the TiO2/electrolyte interface. A physical model that fits well the experimental data is proposed, which also takes into account a correction related to the difference between the illuminated area of the cell and the total area available in the electrical measurements

    Enhanced Power Extraction with Sediment Microbial Fuel Cells by Anode Alternation

    Get PDF
    Sediment microbial fuel cells (SMFCs) are energy harvesting devices where the anode is buried inside marine sediment, while the cathode stays in an aerobic environment on the surface of the water. To apply this SCMFC as a power source, it is crucial to have an efficient power management system, leading to development of an effective energy harvesting technique suitable for such biological devices. In this work, we demonstrate an effective method to improve power extraction with SMFCs based on anodes alternation. We have altered the setup of a traditional SMFC to include two anodes working with the same cathode. This setup is compared with a traditional setup (control) and a setup that undergoes intermittent energy harvesting, establishing the improvement of energy collection using the anodes alternation technique. Control SMFC produced an average power density of 6.3 mW/m2 and SMFC operating intermittently produced 8.1 mW/m2. On the other hand, SMFC operating using the anodes alternation technique produced an average power density of 23.5 mW/m2. These results indicate the utility of the proposed anodes alternation method over both the control and intermittent energy harvesting techniques. The Anode Alternation can also be viewed as an advancement of the intermittent energy harvesting method

    Optimizing the Performance of Low-Loaded Electrodes for CO2-to-CO Conversion Directly from Capture Medium: A Comprehensive Parameter Analysis

    Get PDF
    Gas-fed reactors for CO2 reduction processes are a solid technology to mitigate CO2 accumulation in the atmosphere. However, since it is necessary to feed them with a pure CO2 stream, a highly energy-demanding process is required to separate CO2 from the flue gasses. Recently introduced bicarbonate zero-gap flow reactors are a valid solution to integrate carbon capture and valorization, with them being able to convert the CO2 capture medium (i.e., the bicarbonate solution) into added-value chemicals, such as CO, thus avoiding this expensive separation process. We report here a study on the influence of the electrode structure on the performance of a bicarbonate reactor in terms of Faradaic efficiency, activity, and CO2 utilization. In particular, the effect of catalyst mass loading and electrode permeability on bicarbonate electrolysis was investigated by exploiting three commercial carbon supports, and the results obtained were deepened via electrochemical impedance spectroscopy, which is introduced for the first time in the field of bicarbonate electrolyzers. As an outcome of the study, a novel low-loaded silver-based electrode fabricated via the sputtering deposition technique is proposed. The silver mass loading was optimized by increasing it from 116 μg/cm2 to 565 μg/cm2, thereby obtaining an important enhancement in selectivity (from 55% to 77%) and activity, while a further rise to 1.13 mg/cm2 did not provide significant improvements. The tremendous effect of the electrode permeability on activity and proficiency in releasing CO2 from the bicarbonate solution was shown. Hence, an increase in electrode permeability doubled the activity and boosted the production of in situ CO2 by 40%. The optimized Ag-electrode provided Faradaic efficiencies for CO close to 80% at a cell voltage of 3 V and under ambient conditions, with silver loading of 565 μg/cm2, the lowest value ever reported in the literature so far

    Microwave-assisted synthesis of N/S-doped CNC/SnO2 nanocomposite as a promising catalyst for oxygen reduction in alkaline media

    Get PDF
    In this study, we report an all-green approach for the synthesis of novel catalysts for oxygen reduction reaction (ORR) via a simple two-step procedure. In particular, conductive cellulose nanocrystals (CNCs) were obtained via pyrolysis, and a successive microwave-assisted hydrothermal process was employed to activate the carbon lattice by introducing sulfur (S) and nitrogen (N) dopants, and to decorate the surface with tin oxide (SnO2) nanocrystals. The successful synthesis of N/S-doped CNC/SnO2 nanocomposite was confirmed by X-ray Photoelectron Spectroscopy analysis, Energy Dispersive X-ray microanalysis, X-ray Diffraction and Field Emission Scanning Electron Microscopy. The synergistic effects of the dopants and SnO2 nanocrystals in modifying the catalytic performance were proved by various electrochemical characterizations. Particularly, the nanocomposite material reaches remarkable catalytic performance towards the ORR, close to the Pt/C benchmark, in alkaline environviment, showing promising potential to be implemented in alkaline fuel cell and metal-air battery applications

    Engineering copper nanoparticle electrodes for tunable electrochemical reduction of carbon dioxide

    Get PDF
    The electrochemical conversion of CO2 catalyzed by copper (Cu)-based materials is widely reported to produce different valuable molecules, and the selectivity for a specific product can be achieved by tuning the characteristics of catalytic materials. Differing from these studies on materials, the present work focuses on the engineering of gas diffusion electrodes in order to properly modify the selectivity, particularly by changing the Cu nanoparticle catalyst loading of the electrodes. Low catalyst loadings (≤ 0.25 mg cm−2) favor CH4 production, and intermediate (∼ 1.0 mg cm−2) loadings shift the selectivity toward C2H4. Eventually, larger values (≥ 2.0 mg cm−2) promote CO production. Detailed analyses reveal that both bulk and local CO generation rates, and charge transfer mechanism are responsible for the observed loading-dependent selectivity. The present work provides a new strategy for steering the CO2RR selectivity by simple electrode engineering beyond material development

    Electrochemical Reduction of {CO}2 With Good Efficiency on a Nanostructured Cu-Al Catalyst

    Get PDF
    Carbon monoxide (CO) and formic acid (HCOOH) are suggested to be the most convenient products from electrochemical reduction of CO2 according to techno-economic analysis. To date, tremendous advances have been achieved in the development of catalysts and processes, which make this research topic even more interesting to both academic and industrial sectors. In this work, we report nanostructured Cu-Al materials that are able to convert CO2 to CO and HCOOH with good efficiency. The catalysts are synthesized via a green microwave-assisted solvothermal route, and are composed of Cu2O crystals modified by Al. In KHCO3 electrolyte, these catalysts can selectively convert CO2 to HCOOH and syngas with H-2/CO ratios between 1 and 2 approaching one unit faradaic efficiency in a wide potential range. Good current densities of 67 and 130 mA cm(-2) are obtained at -1.0 V and -1.3 V vs. reversible hydrogen electrode (RHE), respectively. When switching the electrolyte to KOH, a significant selectivity up to 20% is observed for C2H4 formation, and the current densities achieve 146 and 222 mA cm(-2) at -1.0 V and -1.3 V vs. RHE, respectively. Hence, the choice of electrolyte is critically important as that of catalyst in order to obtain targeted products at industrially relevant current densities

    Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting

    Get PDF
    Titanium dioxide (TiO2) and zinc oxide (ZnO) nanostructures have been widely used as photo-catalysts due to their low-cost, high surface area, robustness, abundance and non-toxicity. In this work, four TiO2 and ZnO - based nanostructures, i.e. TiO2 nanoparticles (TiO2 NPs), TiO2 nanotubes (TiO2 NTs), ZnO nanowires (ZnO NWs) and ZnO@TiO2 core-shell structures, specifically prepared with a fixed thickness of about 1.5 μm, are compared for the solar-driven water splitting reaction, under AM1.5G simulated sunlight. A complete characterization of these photo-electrodes in their structural and photo-electrochemical properties was carried out. Both TiO2 NPs and NTs showed photo-current saturation reaching 0.02 and 0.12 mA/cm2, respectively, for potential values of about 0.3 and 0.6 V vs. RHE. In contrast, the ZnO NWs and the ZnO@TiO2 core-shell samples evidence a linear increase of the photocurrent with the applied potential, reaching 0.45 and 0.63 mA/cm2 at 1.7 V vs. RHE, respectively. However, under concentrated light conditions, the TiO2 NTs demonstrate a higher increase of the performance with respect to the ZnO@TiO2 core-shells. Such material dependent behaviours are discussed in relation with the different charge transport mechanisms and interfacial reaction kinetics, which were investigated through electrochemical impedance spectroscopy. The role of key parameters such as electronic properties, specific surface area and photo-catalytic activity on the performance of these materials are discussed. Moreover, proper optimization strategies are analyzed in view of increasing the efficiency of the best performing TiO2 and ZnO - based nanostructures, toward their practical application in a solar water splitting device

    Biochar/Zinc Oxide Composites as Effective Catalysts for Electrochemical CO2 Reduction

    Get PDF
    Novel electrocatalysts based on zinc oxide (ZnO) and biochars are prepared through a simple and scalable route and are proposed for the electrocatalytic reduction of CO₂ (CO₂RR). Materials with different weight ratios of ZnO to biochars, namely, pyrolyzed chitosan (CTO) and pyrolyzed brewed waste coffee (CBC), are synthesized and thoroughly characterized. The physicochemical properties of the materials are correlated with the CO₂RR to CO performance in a comprehensive study. Both the type and weight percentage of biochar significantly influence the catalytic performance of the composite. CTO, which has pyridinic- and pyridone-N species in its structure, outperforms CBC as a carbon matrix for ZnO particles, as evidenced by a higher CO selectivity and an enhanced current density at the ZnO_CTO electrode under the same conditions. The study on various ZnO to CTO weight ratios shows that the composite with 40.6 wt % of biochar shows the best performance, with the CO selectivity peaked at 85.8% at −1.1 V versus the reversible hydrogen electrode (RHE) and a CO partial current density of 75.6 mA cm–² at −1.3 V versus RHE. It also demonstrates good stability during the long-term CO₂ electrolysis, showing high retention in both CO selectivity and electrode activity
    • …
    corecore