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Abstract: Gas-fed reactors for CO2 reduction processes are a solid technology to mitigate CO2 accu-
mulation in the atmosphere. However, since it is necessary to feed them with a pure CO2 stream, a
highly energy-demanding process is required to separate CO2 from the flue gasses. Recently introduced
bicarbonate zero-gap flow reactors are a valid solution to integrate carbon capture and valorization,
with them being able to convert the CO2 capture medium (i.e., the bicarbonate solution) into added-
value chemicals, such as CO, thus avoiding this expensive separation process. We report here a study
on the influence of the electrode structure on the performance of a bicarbonate reactor in terms of
Faradaic efficiency, activity, and CO2 utilization. In particular, the effect of catalyst mass loading and
electrode permeability on bicarbonate electrolysis was investigated by exploiting three commercial
carbon supports, and the results obtained were deepened via electrochemical impedance spectroscopy,
which is introduced for the first time in the field of bicarbonate electrolyzers. As an outcome of the
study, a novel low-loaded silver-based electrode fabricated via the sputtering deposition technique is
proposed. The silver mass loading was optimized by increasing it from 116 µg/cm2 to 565 µg/cm2,
thereby obtaining an important enhancement in selectivity (from 55% to 77%) and activity, while a
further rise to 1.13 mg/cm2 did not provide significant improvements. The tremendous effect of the
electrode permeability on activity and proficiency in releasing CO2 from the bicarbonate solution was
shown. Hence, an increase in electrode permeability doubled the activity and boosted the production of
in situ CO2 by 40%. The optimized Ag-electrode provided Faradaic efficiencies for CO close to 80% at a
cell voltage of 3 V and under ambient conditions, with silver loading of 565 µg/cm2, the lowest value
ever reported in the literature so far.

Keywords: carbon capture and utilization; CO2 valorization; bicarbonate electrolyzer; electrochemical
impedance spectroscopy

1. Introduction

During the previous decades, human activities have increased atmospheric CO2
concentrations, stimulating the scientific community toward the development of less-
carbon intensive technologies and depleting the use of fossil fuels. However, renewable
energy use requires time to be assessed, and it is of capital relevance to reduce carbon
emissions during the energy transition. As a consequence, the renewable-energy-powered
electrochemical reduction reaction of CO2 (eCO2RR) into added-value chemicals and fuels
(e.g., syngas and methane) has attracted strong interest as a solution for a close carbon
cycle [1]. The possibility to obtain carbon-based products from eCO2RR at high rates has
already been deeply investigated in gas-fed electrolyzers [2], where a stream of pure CO2
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needs to be delivered to the cathode. The perspective to employ such technology in an
industrial setting requires coupling between the electrolyzer and CO2 separation from the
other components of flue gasses (e.g., O2, N2, and H2O) emitted by a point source (e.g., an
industrial plant). As an example, alkaline solutions (e.g., KOH) are able to capture gaseous
CO2 from flue gasses thanks to reactions that form (bi)carbonates [3]. Since it is known
that CO2 may be extracted from bicarbonate through energy-intensive processes [4], once
it has been pressurized, it can be exploited for further valorization through electrolytic
conversion. [5] In such kinds of platforms for carbon capture and utilization (CCU), since
common gas-fed electrolyzers exhibit low single-pass utilization, around 80% of delivered
CO2 exits from the platform as unreacted gas [6]. In this framework, liquid-fed bicarbonate
(HCO3

−) electrolyzers have arisen as a new, groundbreaking technology to integrate the
capture and conversion of CO2 (ICCU) [7–9] into CO. These reactors introduced the chance
to eliminate all the energy-demanding processes (capture/stripping and pressurization)
necessary to feed a classical gas-fed eCO2RR system. The electrolysis of carbonate solution,
i.e., the capture media, is possible using a cation exchange membrane (CEM) or a bipolar
membrane (BPM) that, providing an acidic local environment, makes gaseous CO2 available
in proximity to the catalyst for electroreduction. The utilization of a BPM instead of a CEM
is now benchmarked since it allows for the employment of an inexpensive nickel anode
and prevents products’ cross-over [10,11]. The BPM, together with anodic and cathodic
catalysts, constitutes a membrane electrode assembly (MEA), which is the benchmark
configuration in bicarbonate electrolyzers. In the MEA, the presence of H+ (produced in
the BPM by water splitting) at the membrane/catalyst interface is responsible for the in
situ acidification and thus extraction of CO2 (i-CO2) from (bi)carbonate, which is converted
into CO (Equations (1) and (2)), thanks to the eCO2RR catalyst.

H+ + HCO3
− ↔ H2O + CO2 (g) (1)

CO2(g) + H2O + 2e− → 2OH− + CO (2)

Since OH− is a product of the CO2RR as well, the original alkaline capture solution is
regenerated, making this system able to implement a closed cycle where CO2 is sequentially
captured and converted. The presence of a MEA ensures a very high local concentration
of CO2 at the electrocatalyst interface without the need of supplying the reactor by a
stream of gaseous CO2 in stoichiometric excess, as happens with gas-fed electrolyzers.
This also means that CO2RR products are generated at higher concentrations [12]. The
gas diffusion electrode (GDE) employed in this kind of system has to ensure the efficient
transport of carbon feedstock (i.e., HCO3

−) at the BPM/catalyst interface. Therefore it must
be engineered differently with respect to the GDEs used in gas-fed electrolyzers, which
usually exhibit hydrophobic properties to avoid the accumulation of water and to mitigate
the hydrogen evolution reaction (HER) [13], the competing reaction of the CO2RR.

Despite the promising advantages, research conducted on this technology so far is still
limited compared to more well-known gas-fed electrolyzers. Therefore, a deep investigation
into every aspect of the system is needed. Among the first works, Y. C. Li et al. [8] reported
a bicarbonate electrolyzer able to keep the high pH of the capture solution for 145 h by
using a carbon composite silver electrode, but the highest Faradaic efficiency (FE) toward
CO (FECO) was ~35%. T. Li et al. [7] with a silver nanoparticle-coated carbon support
obtained impressive FECO at a low current density and showed how the employment of an
anion exchange membrane (AEM) is detrimental to the electrolyzer’s performance. The
same conclusion was reported by C. Larrea et al. [14], whereby, although it was responsible
for a large ohmic drop between the two electrodes, the necessity to use a BPM in order to
have appreciable FE was proven. Z. Zhang et al. [15] showed how the increase in porosity
of a silver foam, employed as a cathode, enables more efficient CO2 conversion; however,
even avoiding the utilization of composite carbon electrodes, the FECO achieved at ambient
conditions is around 60%. In addition, they illustrated how higher pressure and higher
temperature promote the CO2RR. Y. Kim et al. [16] underlined the importance of a trade-off
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between the active surface and the permeability of the GDE in order to guarantee both a high
CO2RR rate and efficient transport of bicarbonate (i.e., i-CO2 generation). E. W. Lees et al. [17]
reported important information on the spray coating of a silver catalyst in order to have an
efficient GDE in terms of Nafion content and Ag nanoparticle loading. By adding a preliminary
deposition step by sputtering physical vapor deposition (PVD) before the spray coating, they
reached a very good FECO (around 82%) using a high silver loading of 2 mg/cm2.

The sputtering technique serves as a rapid and reproducible method for manufacturing
nanostructured Ag-GDEs with a high surface area in a single step, offering precise control
over catalyst loading, layer thickness, and homogeneity. Our research group has already
explored and established the reliability of this approach [18]. In this study, we further
optimized the sputtering process to fabricate a GDE specifically designed for bicarbonate
electrolyzers. To investigate the electrode’s performance, we tested different commercial
carbon supports with distinct characteristics such as gas diffusion layers (GDLs). This
allowed us to delve into the GDL’s role and its impact on the FECO and CO2 utilization,
representing the extent of CO2 conversion compared to the unreacted CO2. During the
analysis, we explored the influence of several structural and morphological properties of
the cathode on the electrochemical performance. These properties encompassed different
catalyst distributions on the GDL, GDL hydrophobicity and permeability. By understanding
the significance of these factors, we gain critical insights into optimizing the GDE’s design
and performance for bicarbonate electrolyzers.

Moreover, electrochemical impedance spectroscopy (EIS) has already demonstrated
its efficacy as an efficient tool for studying the charge transfer and transport processes
involved in typical systems for CO2 reduction reactions (CO2RRs) [19]. Its utility has made
it a valuable technique for the characterization of materials and reactors in this field [20,21].
Despite this, to the best of our knowledge, it has never been employed in studies involving
bicarbonate electrolyzers. Remarkably, our paper presents a pioneering application of
EIS to investigate the performance of GDEs employed in bicarbonate electrolyzers. This
novel approach represents a significant advancement in the field, as previous research has
primarily focused on using EIS for other CO2RR systems. Through careful modeling of
the GDE/electrolyte interface using an equivalent electrical circuit, this paper successfully
elucidates the underlying factors influencing the activity and Faradaic efficiency trends of
the GDEs.

2. Materials and Methods
2.1. Preparation and Morphological Characterization of Ag GDEs

DC Sputtering (Quorum Technologies Ltd., Lewes, UK, Q150T) was used to prepare
the Ag electrodes. Three commercial carbon papers (GDL, Ion Power) of 5 cm2 characterized
by different permeability and wettability (Table S1) were used as substrates, with a silver
disk (99.999%, Nanovision, Brugherio, Italy) as the target. The deposition current was fixed
at 50 mA, while the deposition time was varied to control the silver mass-loading (100 s,
300 s, and 600 s). A total of 6 GDE samples (A–F) were prepared, whose properties are
reported in Table S2. All of the samples were prepared by depositing silver on both faces of
the carbon papers, except for sample A. The mass loading was determined by weighing the
sample before and after the silver deposition and then by dividing the weight difference by
the geometric area of the GDL. The morphology of the commercial carbon-based supports
and Ag-GDE samples was investigated by field emission scanning electron microscopy
(FESEM, Zeiss Auriga, Oberkochen, Germany).

2.2. Electrochemical Tests and Product Analyses

The electrochemical screening was performed in a bicarbonate electrolyzer (Scribner,
Cell Fixture) placed in a vertical position, whose schematic representation is reported in
Figure 1. A more detailed description of the system is provided in the Supporting Infor-
mation. A 5 cm2 MEA was employed in the electrolyzer, and it was made by a bipolar
membrane (FumaSep FBM, FumaTech, Bietigheim-Bissingen, Germany) sandwiched be-
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tween a Nickel foam (99.5%, GoodFellow, Huntingdon, UK) and a Ag GDE. KHCO3 (99.5%,
Sigma-Aldrich, St. Louis, MO, USA) 2 M was used as a catholyte and KOH (Sigma-Aldrich)
1 M was used as an anolyte by dissolving 200 g and 56 g, respectively, in 1 L of ultra-pure
water. A peristaltic pump was used to continuously recirculate 60 mL of bicarbonate
solution and 40 mL of potassium hydroxide at a flow rate of 5 mL/min. Electrolysis was
carried out at ambient temperature and pressure by applying a constant cell voltage (Vcell)
of 3 V (Potentiostat, BioLogic VSP, Seyssinet-Pariset, France). Gas-phase products were
delivered to a microgas chromatograph (µGC, Fusion, INFICON) by a N2 35 mL/min
stream (Bronkhorst, EL-FLOW select) and analyzed on-line throughout the entire duration
of the experiment. The microgas chromatograph, which is preceded by a mass flow reader
(Bronkhorst, Ruurlo, The Netherlands, EL-FLOW prestige), is composed of two channels
with a 10 m Rt-Molsieve 5A column and an 8 m Rt-Q-Bond column, and each channel has a
microthermal conductivity detector. Two tests were conducted per set of experiments, and
the results are reported as average values (the error bars correspond to the absolute error).
Additional details on the calculation of the CO partial current density, FE, CO2 utilization,
mass activity, and partial mass activity are provided in the Supporting Information.
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2.3. Electrochemical Impedance Spectroscopy

EIS measurements were performed in a three-electrode single compartment cell at
room temperature with a Biologic VSP electrochemical workstation. The working electrode
was a Ag GDE with a geometric area of 0.4 cm2. A Pt wire was used as the counter electrode,
and Ag/AgCl (3 M Cl−) was used as the reference, with both purchased from ALS. The
electrolyte was a CO2-saturated 2 M KHCO3 (99.5%, Sigma-Aldrich) aqueous solution. The
analysis was performed at a potential of −1 V vs. a reversible hydrogen electrode (RHE)
with an AC signal with 10 mV of amplitude and a 0.1–105 Hz frequency range.

3. Results and Discussion

As the first step of GDE optimization, it was investigated as to whether it is more
convenient to deposit the silver only on one side of the carbon support or on both of them
(Figure 2a). Therefore, keeping the same sputtering parameters and carbon support, two
samples were made. On the first one (sample A), silver was sputtered only on the face
in contact with the bipolar membrane, while on the second one, the sputtering process
was replicated on the opposite side as well (sample B), the one facing the graphite flow
field. As shown in Figure 2b, sample A exhibits relatively good activity and FECO. This
implies that the most active interface is the one facing the bipolar membrane, namely the
region with the highest concentration of i-CO2, since it is in proximity to the BPM. However,
sputtering the silver on the other side of the GDL as well boosted the FECO from 55% to
77%. Considering the results of this experiment, silver was deposited on both faces of the
GDE samples tested from then on.
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Figure 2. (a) Schematic representation of the GDEs with silver sputtered on one face (sample A) and
both (sample B) faces. (b) FE, CO2 utilization and CO partial current density obtained by the two
GDEs samples.

The carbon support used to obtain the results mentioned just above was not treated
with polytetrafluoroethylene (PTFE) nor did it include a microporous layer (MPL). These
two characteristics are fundamental if this electrode had been used in a common gas-fed
CO2RR reactor [18]. In gas-fed reactors, the MPL and the hydrophobic treatment produce
water repellent properties that can prevent the carbon fiber backing from flooding. In
bicarbonate electrolyzers, the hydrophobic feature inhibits the transport of bicarbonate
from the flow field toward the BPM, where the low-pH region is located. In this way, the
production of i-CO2 drastically decreases, hence also the FECO, JCO, and the CO2 utilization
(Figure 3). By using a hydrophobic carbon support (sample C), the FECO decreases to 23%,
while JCO and the overall activity (Jtot) (Figure S1a) are significantly affected as well.

Nanomaterials 2023, 13, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 3. FE, CO2 utilization, and CO partial current density obtained with GDEs with two different 
GDLs: one has not been treated with PTFE and does not include an MPL (sample B), while the other 
has a strong hydrophobic feature thanks to the PTFE and MPL (sample C). 

Once the importance of using a GDE with no hydrophobic treatment and presence 
of a catalyst on both its faces has been confirmed, the silver mass loading was optimized 
by modulating the sputtering time. The performances of GDEs with silver mass loading 
of 116 μg/cm2 (sample D), 565 μg/cm2 (sample B), and 1.13 mg/cm2 (sample E) were ex-
plored by carrying out electrolysis in the flow cell and an EIS analysis in a three-electrodes 
set-up. As reported in Figure 4a, the sample with 116 μg/cm2 of silver shows the lowest 
FE (55%), while the other two samples with higher mass loading exhibit better selectivity 
toward CO. However, since the 1.13 mg/cm2 sample did not provided any improvement 
in selectivity with respect to 565 μg/cm2, the latter was identified as optimal catalyst load-
ing since it achieved an FECO value of 77%, namely, to the best of our knowledge, the low-
est loaded silver-based GDE reported in the literature so far (Table 1). Most probably, the 
great amount of material deposited in sample E lowered the permeability of the GDE, 
inhibiting the mass transport of bicarbonate and affecting the selectivity. The performance 
in terms of CO2 utilization followed a similar trend to the Faradaic efficiency: it was dou-
bled by increasing the silver loading from 116 μg/cm2 to 565 μg/cm2, while, with sample 
E, the increase to 1.13 mg/cm2 of silver loading did not further enhance the CO2 utilization. 
JCO and Jtot (Figure S1a) increased with higher loadings as confirmed by the EIS analysis 
(Table S3 and Figure S2). Indeed, the increasing trend of activities observed during bicar-
bonate electrolysis could be related to the value of the charge transfer resistance (Rct). This 
parameter describes the catalyst’s ability to exchange electrons with the reactants, appli-
cable to both the CO2RR and HER. Rct decreases from 1.42 Ω cm2 to 0.92 Ω cm2 when 
augmenting the amount of silver from 116 μg/cm2 to 565 μg/cm2 (Figure 4b). A further 
decrease (0.38 Ω cm2) was experienced with the highest loaded sample (E). Since the elec-
trochemical surface area (ECSA) is considered to be proportionally associated to the dou-
ble layer capacitance Cdl derivable from the EIS analysis (Table S3) [22], the intrinsic activ-
ity of various materials can be compared by investigating the Cdl normalized current den-
sities (Figure S3) [23]. This investigation confirmed 565 μg/cm2 as the optimal mass load-
ing since it showed the highest Cdl normalized current density, hence the largest presence 
of active sites for the CO2RR to CO. However, the higher mass activity obtained with sam-
ple D (87.1 mA/mgAg) compared to samples B and E highlights the excellent performance 
of this type of GDE even at very low mass-loading (Figure 4c). 

  

no PTFE PTFE + MPL

FE
 \ 

%

 H2

 CO

0

5

10

15
 JCO

J C
O
 \ 

m
A/

cm
2

0

20

40

60

80

100

 CO2 utilization

C
O

2 
ut

iliz
at

io
n 

\ %

Figure 3. FE, CO2 utilization, and CO partial current density obtained with GDEs with two different
GDLs: one has not been treated with PTFE and does not include an MPL (sample B), while the other
has a strong hydrophobic feature thanks to the PTFE and MPL (sample C).

Once the importance of using a GDE with no hydrophobic treatment and presence
of a catalyst on both its faces has been confirmed, the silver mass loading was optimized
by modulating the sputtering time. The performances of GDEs with silver mass loading
of 116 µg/cm2 (sample D), 565 µg/cm2 (sample B), and 1.13 mg/cm2 (sample E) were
explored by carrying out electrolysis in the flow cell and an EIS analysis in a three-electrodes
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set-up. As reported in Figure 4a, the sample with 116 µg/cm2 of silver shows the lowest
FE (55%), while the other two samples with higher mass loading exhibit better selectivity
toward CO. However, since the 1.13 mg/cm2 sample did not provided any improvement in
selectivity with respect to 565 µg/cm2, the latter was identified as optimal catalyst loading
since it achieved an FECO value of 77%, namely, to the best of our knowledge, the lowest
loaded silver-based GDE reported in the literature so far (Table 1). Most probably, the
great amount of material deposited in sample E lowered the permeability of the GDE,
inhibiting the mass transport of bicarbonate and affecting the selectivity. The performance
in terms of CO2 utilization followed a similar trend to the Faradaic efficiency: it was
doubled by increasing the silver loading from 116 µg/cm2 to 565 µg/cm2, while, with
sample E, the increase to 1.13 mg/cm2 of silver loading did not further enhance the CO2
utilization. JCO and Jtot (Figure S1a) increased with higher loadings as confirmed by the EIS
analysis (Table S3 and Figure S2). Indeed, the increasing trend of activities observed during
bicarbonate electrolysis could be related to the value of the charge transfer resistance (Rct).
This parameter describes the catalyst’s ability to exchange electrons with the reactants,
applicable to both the CO2RR and HER. Rct decreases from 1.42 Ω cm2 to 0.92 Ω cm2

when augmenting the amount of silver from 116 µg/cm2 to 565 µg/cm2 (Figure 4b). A
further decrease (0.38 Ω cm2) was experienced with the highest loaded sample (E). Since
the electrochemical surface area (ECSA) is considered to be proportionally associated to the
double layer capacitance Cdl derivable from the EIS analysis (Table S3) [22], the intrinsic
activity of various materials can be compared by investigating the Cdl normalized current
densities (Figure S3) [23]. This investigation confirmed 565 µg/cm2 as the optimal mass
loading since it showed the highest Cdl normalized current density, hence the largest
presence of active sites for the CO2RR to CO. However, the higher mass activity obtained
with sample D (87.1 mA/mgAg) compared to samples B and E highlights the excellent
performance of this type of GDE even at very low mass-loading (Figure 4c).
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Table 1. The reported state-of-the-art silver GDEs’ performance for liquid-fed bicarbonate electrolyzers.

Ag Mass Loading
(mg/cm2)

Deposition Technique
Feedstock

[KHCO3 (M)]
FECO
(%)

Cell
Potential (V)

JCO
(mA/cm2)

Partial Mass
Activity (mA/mgAg)

Reference

13 * Spray coating 3 80 3 20 2 * [7]
2 PVD + spray coating 3 25 3.5 25 13 [8]
2 Spray coating 2 58 3 14 7 [14]

Foam ** Free standing electrode ** 3 60 3.7 60 - [15]
3 Electrodeposition 3 70 3.5 70 23 [16]
2 PVD + spray coating 3 82 3.6 82 41 [17]

0.565 PVD 2 77 3 13 25 This work
0.565 PVD 2 58 3 22 40 This work
0.116 PVD 2 55 3 6 48 This work

* This is the nominal loading; the experimental one was not reported by T. Li et al. [7]. ** Loading not present
since a silver foam was used as a free-standing GDE.

As already mentioned, the structural characteristics of the carbon composite elec-
trode are crucial in the determination of the catalytic behavior of the GDE in bicarbonate
electrolyzers. In particular, the choice of the GDL is critical, as its permeability to the
bicarbonate solution directly impacts the i-CO2 production efficiency. It is known that the
catalyst’s selectivity toward CO tends to increase when the system is more proficient in
producing i-CO2 [24].

This observation was further confirmed by comparing the performance of the same
GDE (sample B) using a less concentrated bicarbonate solution. When the concentration
is halved from 2 M to 1 M, the carbon feedstock is poorer and the i-CO2 generated drops.
This introduces a mass transport limitation, causing a decrease in FECO from 77% to 55%,
while the CO2 utilization drastically increased from 40% to 83%, as reported in Figure 5.
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Figure 5. FE, CO2 utilization, and CO partial current density when varying the concentration of the
bicarbonate solution. GDE sample: B.

Increasing the permeability of the GDL would have a similar effect to using a higher
electrolyte concentration. This improvement allows for enhanced flow of bicarbonate
through the GDE, reaching the BPM, and consequently, the low-pH region becomes capable
of producing a larger amount of i-CO2. Therefore, sample B was compared, whilst keeping
the same mass loading (565 µg/cm2), to a GDE (sample F) whose GDL has a permeability
that is four times higher. The effect of permeability is evident in Figure 6a, which shows
the amount of CO2 released inside the reactor as a function of the GDE’s permeability.
The graph presents the total i-CO2 produced, which was calculated by summing the
concentrations of CO2 and CO detected at the electrolyzer outlet during electrolysis.
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However, as shown in Figure 6b, the improvement in i-CO2 production given by the
high permeability of sample F did not provide an enhancement of selectivity; in fact, FECO
dropped from 77% in sample B to 58%. Most probably, having a very open structure (see
FESEM micrographs in Figure S4), which allows it to be more permeable to the bicarbonate,
introduces a problem of mass transportation of i-CO2 toward the active sites, affecting
the FECO. The Rct provided by the EIS analysis in sample F is around three times lower
(Figure 6c), meaning that it includes a higher number of active sites for catalysis, either for
CO2RR or HER, as evidenced by the double-layer capacitance and displayed in Figure 6d.
The slightly larger value of the Cdl of the most permeable GDE, 1.06 mF/cm2 compared
to 0.92 mF/cm2, indicates a higher ECSA and confirms the presence of a larger number
of active sites. The Rct and Cdl values account for the high values of Jtot (Figure S1a),
partial mass activity (Figure S1b), and JCO observed in sample F, ensuring a good CO2
utilization percentage even with a lower FECO and increased i-CO2 production. In fact, the
partial mass activity for CO was found to be 40 mA/mgAg (Figure S1b), surpassing values
reported in the literature (Table 1). It is important to emphasize that despite the lower
Faradaic efficiency, the significantly high JCO achieved, explained by the higher ECSA,
makes sample F likely the most suitable GDE for industrial purposes in syngas production.

4. Conclusions

In this work, novel high-performance Ag electrodes for bicarbonate electrolyzers were
fabricated via a simple and scalable sputtering method. Silver thin films were deposited on
commercial carbon supports and used as free-standing gas diffusion electrodes without any
post-treatment. Thanks to the highly repeatable deposition technique, GDEs with different
carbon substrates and silver mass loadings were reliably tested at Vcell = 3 V to understand
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their effect in terms of activity and selectivity in CO2-to-CO conversion. The final result
of this investigation presents Ag-GDEs with a FECO close to 80%, which is comparable to
the state-of-the-art achievement with a mass loading of 565 µg/cm2 (sample B). This mass
loading is significantly lower compared to the well-performing Ag-GDEs reported in the
literature. Moreover, increasing the permeability of the carbon GDL significantly enhanced
the activity and, consequently, the mass-activity. As a result, sample F exhibited remarkably
high partial mass activity compared to the values reported in the literature for bicarbonate
electrolyzers. The new Ag electrode reported respectable results in terms of CO2 utilization,
which turned out to be around 40%, while, when the bicarbonate concentration was halved
to 1 M, it reached 83%. Additionally, our research marks a significant advancement in the
field of GDE development for bicarbonate electrolyzers by introducing the application of
electrochemical impedance spectroscopy. This innovative technique provided us with a
valuable opportunity to delve deeper into the underlying factors that influenced the GDE’s
performance within the reactor. In fact, the charge transport resistances and the double-layer
capacitances derived from the fitting of the experimental Nyquist plot provided an effective
explanation for the different behaviors of the GDEs during bicarbonate electrolysis. Therefore,
by using EIS as a powerful characterization tool for GDEs in bicarbonate electrolyzers, this
work contributes to the growing body of knowledge in this emerging field of research.

The profound insights gained from this study offer a comprehensive understanding
of the intricate electrochemical processes taking place within GDEs during bicarbonate
electrolysis. Based on the results obtained by this work, the herein-proposed Ag GDEs
demonstrate exceptionally promising potential for low-cost electrodes in the future industrial
implementation of integrated carbon capture and conversion through bicarbonate electrolyzers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13162314/s1. Tables S1 and S2 on the features of commercial
carbon papers and Ag-GDEs; Figure S1 reporting the total density current and the partial mass activity;
details on the reactor set-up; formulas used to calculate Faradaic efficiencies, partial density current,
i-CO2, CO2 utilization, mass activity, and partial mass activity; details on and results (Table S3 and
Figure S2) of the EIS analysis; Figure S3 reports the values of Jtot/Cdl; Figure S4 displays the FESEM
images of the GDEs. Ref. [25] is cited in the Supplementary Materials.
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