10 research outputs found

    Nanoplasmonic biosensing approach for endotoxin detection in pharmaceutical field

    Get PDF
    none7noThe outer membrane of Gram-negative bacteria contains bacterial endotoxins known as Lipopolysaccharides (LPS). Owing to the strong immune responses induced in humans and animals, these large molecules have a strong toxic effect that can cause severe fever, hypotension, shock, and death. Endotoxins are often present in the environment and medical implants and represent undesirable contaminations of pharmaceutical preparations and medical devices. To overcome the limitations of the standard technique, novel methods for early and sensitive detection of LPS will be of crucial importance. In this work, an interesting approach for the sensitive detection of LPS has been realized by exploiting optical features of nanoplasmonic transducers supporting Localized Surface Plasmon Resonances (LSPRs). Ordered arrays of gold nano-prisms and nano-disks have been realized by nanospheres lithography. The realized transducers have been integrated into a simple and miniaturized lab-on-a-chip (LOC) platform and functionalized with specific antibodies as sensing elements for the detection of LPS. Interactions of specific antibodies anchored on protein A-modified sensor chips with the investigated analyte resulted in a spectral shift in the plasmonic resonance peak of the transducers. A good linear relationship between peak shifts and the LPS concentration has been demonstrated for the fabricated nano-structures with a detection limit down to 5 ng/mL. Integration with a proper microfluidic platform demonstrates the possibility of yielding a prototypal compact device to be used as an analytical test for quality determination of pharmaceutical products.openColombelli A.; Primiceri E.; Rizzato S.; Monteduro A.G.; Maruccio G.; Rella R.; Manera M.G.Colombelli, A.; Primiceri, E.; Rizzato, S.; Monteduro, A. G.; Maruccio, G.; Rella, R.; Manera, M. G

    Magneto-Optical properties of noble-metal nanostructures: functional nanomaterials for bio sensing

    Get PDF
    Metallic nanostructures supporting Localized Surface Plasmon Resonances (LSPR) are characterized by their unique ability to control and manipulate light at the nanoscale. Noble metal nanostructures, such as gold nanostructures, are demonstrating to exhibit magneto-optic activity in the presence of modulated magnetic field of low intensity in transversal configuration (T-MOKE). Validation of experimental findings was achieved by numerical simulations based on Finite Element Method (FEM) techniques. The developed numerical models allowed studying the combination of the T-MOKE effect with the localized surface plasmon resonance of metal nanoparticles. Numerical optical and magneto-optical spectra provided a deep insight on the physical aspects behind the magneto-optical activity of metal nanostructures strictly related to direction of oscillations electrical dipoles generated in resonance conditions. Additionally the MO signal was characterized as a transducing signal for refractive index sensing in liquid conditions. The outcome is an increase in the limit of detection of magneto optical transducer with respect to traditional plasmonic sensors. A new strategy for magneto-plasmonic sensing based on the use of glass supported -Au nanostructures based on their MO properties has put forward.The authors want to acknowledge G. Montagna and E. Melissano for technical support and the financial support from Italian MIUR through FIRB project RBFR10OAI0 Nanoplasmag. A. G.-M. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (Contract No.MAT2014-58860-P), and the Comunidad de Madrid (Contract No. S2013/MIT-2740).Peer reviewe

    Peroxides and Bisphenols Detection in Extra Virgin Olive Oil (EVOO) by Plasmonic Nanodomes Transducers

    No full text
    Large-area nanostructured transducer for absorption opto-plasmonic measurements in the ultraviolet visible UV-VIS spectral range have been realized by colloidal lithography. The design and simulation performed guarantee the optical behaviour of the nanostructured transducers. Morphological characterization by AFM microscopy evidences the nanodome structure of the object realized in array configuration. A microfluidic device was optimized to perform measurements in real time. Qualitative evaluation of the peroxides’ and bisphenols’ concentration in extra virgin olive oil (EVOO) have been obtained by following the variation in the plasmonic resonance monitoring of a suitable array nanodome structure deposited onto a glass substrate. Comparison of the obtained results with laboratory-standard methodologies gives us guaranteed support of the potential of the realized technology

    Tunable Nanoplasmonic Transducers: Performance Analysis and Potential Application

    No full text
    Plasmonic nanostructures with tunable optical properties can have many different applications, including high-sensitivity optical sensing for biological and chemical analyses in different field such as medical, environmental and food safety. The realization of an optimized sensing platform is closely related to the ability to finely control optical properties of nanostructures, which are, in turn, intimately linked to their geometrical and compositional characteristics. In this paper, an efficient and reproducible fabrication protocol, based on nanosphere lithography, for the realization of metal nanostructures with tunable plasmonic features is presented. In particular, the relationships between the geometric characteristics of different types of nanostructures with related optical phenomena such as enhanced absorption or extraordinary transmission are investigated in detail. These properties, together with electric field enhancement and confinement, are characterized and optimized in view of the employment of the fabricated nanostructures as optical transducers in nanoplasmonic chemosensor platforms working in the UV-VIS spectral range

    Shape Modulation of Plasmonic Nanostructures by Unconventional Lithographic Technique

    No full text
    Conventional nano-sphere lithography techniques have been extended to the fabrication of highly periodic arrays of sub-wavelength nanoholes in a thin metal film. By combining the dry etching processes of self-assembled monolayers of polystyrene colloids with metal physical deposition, the complete transition from increasing size triangular nanoprism to hexagonally distributed nanoholes array onto thin metal film has been gradually explored. The investigated nano-structured materials exhibit interesting plasmonic properties which can be precisely modulated in a desired optical spectral region. An interesting approach based on optical absorbance measurements has been adopted for rapid and non-invasive inspections of the nano-sphere monolayer after the ion etching process. By enabling an indirect and accurate evaluation of colloid dimensions in a large area, this approach allows the low-cost and reproducible fabrication of plasmonic materials with specifically modulated optical properties suitable for many application in biosensing devices or Raman enhanced effects

    Self-Assembled Metal Nanohole Arrays with Tunable Plasmonic Properties for SERS Single-Molecule Detection

    No full text
    Arrays of metal nano-holes have proved to be among of the most promising structures for applications in the field of nano-photonics and optoelectronics. Supporting both localized and propagating surface plasmons resonances, they are characterized by very high versatility thanks to the tunability of these modes, by means of the change of their periodicity, the size of the holes and metal composition. The interaction between different optical features can be exploited to modulate electromagnetic field distribution leading various hot-spots excitations on the metal surfaces. In this work, long range ordered arrays of nano-holes in thin gold films, with different geometrical characteristics, were fabricated by a modified nano-sphere lithography protocol, which allows precise control on holes’ dimensions together with the preservation of the order and of the pristine periodicity of the array. An in-depth analysis of the correlation between surface plasmon modes interference and its effect on electromagnetic field distribution is proposed, both by numerical simulations and experimentally. Finally, metal nano-holes arrays are exploited for surface enhanced Raman experiments, evaluating and comparing their performances by the estimation of the enhancement factor. Values close to the single molecule detection are obtained for most of the samples, proving their potentialities in surface enhanced spectroscopy applications

    Long- and Short-Range Ordered Gold Nanoholes as Large-Area Optical Transducers in Sensing Applications

    No full text
    Unconventional lithography (such as nanosphere lithography (NSL) and colloidal lithography (CL)) is an attractive alternative to sequential and very expensive conventional lithography for the low-cost fabrication of large-area nano-optical devices. Among these, nanohole (NH) arrays are widely studied in nanoplasmonics as transducers for sensing applications. In this work, both NSL and CL are implemented to fabricate two-dimensional distributions of gold NHs. In the case of NSL, highly ordered arrays of gold NHs distributed in a hexagonal lattice onto glass substrates were fabricated by a simple and reproducible approach based on the self-assembling of close-packed 500 nm diameter polystyrene particles at an air/water interface. After the transfer onto a solid substrate, the colloidal masks were processed to reduce the colloidal size in a controllable way. In parallel, CL was implemented with short-range ordered gold NH arrays onto glass substrates that were fabricated by electrostatically-driven self-assembly of negatively charged colloids onto a polydiallyldimethylammonium (PDDA) monolayer. These distributions were optimized as a function of the colloidal adsorption time. For both approaches, controllable and reproducible procedures are presented and discussed. The optical responses of the NH structures are related to the short-range ordering level, and their good performances as refractive index transducers are demonstrated

    Surface Plasmon Resonance Optical Sensors for Engine Oil Monitoring

    No full text
    Lubricant systems are fundamental in engines (automotive, aviation, rail etc.) and in any industrial system where surfaces of moving mechanical parts are in contact [1]. An improper lubrication due to oil degradation over a long period of time can lead to unwanted component failure and increased maintenance costs. Present study, unlike methods developed until now for detecting oil degradation (loss of mechanical, physical, chemical and optical properties) focuses on the development of a Surface Plasmon Resonance (SPR) transduction methodology able to measure lubricant degradation in real time observing the change in the refractive index. This approach answers to environmental regulation and user requirements on performance, lifetime expectancy and engine efficienc

    Interaction-tailored organization of large-area colloidal assemblies

    No full text
    Colloidal lithography is an innovative fabrication technique employing spherical, nanoscale crystals as a lithographic mask for the low cost realization of nanoscale patterning. The features of the resulting nanostructures are related to the particle size, deposition conditions and interactions involved. In this work, we studied the absorption of polystyrene spheres onto a substrate and discuss the effect of particle-substrate and particle-particle interactions on their organization. Depending on the nature and the strength of the interactions acting in the colloidal film formation, two different strategies were developed in order to control the number of particles on the surface and the interparticle distance, namely changing the salt concentration and absorption time in the particle solution. These approaches enabled the realization of large area (≈cm2) patterning of nanoscale holes (nanoholes) and nanoscale disks (nanodisks) of different sizes and materials
    corecore