25 research outputs found

    Whole genome and transcriptome amplification: practicable tools for sustainable tissue biobanking?

    Get PDF
    The use of whole genome amplification (WGA) and whole transcriptome amplification (WTA) techniques enables the enrichment of DNA and RNA from very small amounts of tissue. Here, we tested the suitability of WGA and WTA for tumor tissue biobanking. DNA and RNA from 13 standardized and seven non-standardized frozen and 12 formalin-fixed, paraffin-embedded (FFPE) clear cell renal cell carcinoma specimens (>9years old) served to test the robustness of the WGA and WTA products by reidentifying von Hippel-Lindau (VHL) gene mutations known to exist in these samples. The enrichment of DNA and RNA from frozen tissue was up to 1,291-fold and 423-fold, respectively. The sizes and yields (10- to 73-fold) of the amplified DNA obtained from the 12 FFPE samples were generally lower. The quality of the RNA from the FFPE samples was too low to reliably perform WTA. Our results demonstrate that frozen tumor tissue is very suitable for WGA and WTA. All 20 VHL mutations were verified with WGA. Notably, we were able to show that 18 of the 20 (90%) VHL mutations are also transcribed. In FFPE tumor tissue, 8 of 12 cases (67%) showed the expected mutations after the first WGA. Accurate WTA with FFPE material is sophisticated and strongly depends on the modification and degradation status of the fixed tissue. We conclude that for sustainable tissue biobanking, the use of WGA and WTA is a unique opportunity to provide researchers with sufficient amounts of nucleic acids, preferably from limited frozen tissue materia

    Whole genome and transcriptome amplification: practicable tools for sustainable tissue biobanking?

    Full text link
    The use of whole genome amplification (WGA) and whole transcriptome amplification (WTA) techniques enables the enrichment of DNA and RNA from very small amounts of tissue. Here, we tested the suitability of WGA and WTA for tumor tissue biobanking. DNA and RNA from 13 standardized and seven non-standardized frozen and 12 formalin-fixed, paraffin-embedded (FFPE) clear cell renal cell carcinoma specimens (>9 years old) served to test the robustness of the WGA and WTA products by reidentifying von Hippel-Lindau (VHL) gene mutations known to exist in these samples. The enrichment of DNA and RNA from frozen tissue was up to 1,291-fold and 423-fold, respectively. The sizes and yields (10- to 73-fold) of the amplified DNA obtained from the 12 FFPE samples were generally lower. The quality of the RNA from the FFPE samples was too low to reliably perform WTA. Our results demonstrate that frozen tumor tissue is very suitable for WGA and WTA. All 20 VHL mutations were verified with WGA. Notably, we were able to show that 18 of the 20 (90 %) VHL mutations are also transcribed. In FFPE tumor tissue, 8 of 12 cases (67 %) showed the expected mutations after the first WGA. Accurate WTA with FFPE material is sophisticated and strongly depends on the modification and degradation status of the fixed tissue. We conclude that for sustainable tissue biobanking, the use of WGA and WTA is a unique opportunity to provide researchers with sufficient amounts of nucleic acids, preferably from limited frozen tissue material

    Next Generation Sequencing of Reactive Stroma and Residual Breast Cancer Cells in Tumor Bed after Neoadjuvant Chemotherapy

    Full text link
    Primary systemic or neoadjuvant chemotherapy of breast cancer has become a standard therapy option in locally advanced or predefined intrinsic subtypes such as triple negative or Her2 positive breast cancer. Neoadjuvant chemotherapy can result in complete pathological response without residual tumor cells (tumor bed) or partial response and non-response with different amounts of reactive stroma and residual tumor cells. The interaction between therapy regimens and tumoral driver mutations have been extensively studied, although the reactive stroma of the tumor bed received less attention. In this study, we characterized the mutational status of residual breast cancer cells and reactive tumor stroma devoid of residual tumor cells in partial or non-responders using next generation sequencing. Twenty-one post-therapeutic breast surgical specimens after neoadjuvant chemotherapy underwent pathogenic driver-mutation screening using microdissected residual breast cancer cells and in reactive stroma adjacent to tumor bed areas. In reactive stroma, no mutations could be validated. In residual breast cancer cells, mutations were detected in sixteen of twenty-one cases (76%). In nine of these twenty-one cases (43%), pathogenic driver mutations (PIK3CA, PTEN, TP53, FN1, PLAG1) were identified. Pathogenic driver-mutations are exclusively restricted to residual carcinoma cells and are absent in reactive stroma independently from intrinsic breast cancer subtypes or tumor stage. These data suggest that the absence of pathogenic mutations in a tumor bed without residual tumor cells may have prognostic implications after neoadjuvant chemotherapy

    Combined mutation of Vhl and Trp53 causes renal cysts and tumours in mice

    Get PDF
    The combinations of genetic alterations that cooperate with von Hippel-Lindau (VHL) mutation to cause clear cell renal cell carcinoma (ccRCC) remain poorly understood. We show that the TP53 tumour suppressor gene is mutated in approximately 9% of human ccRCCs. Combined deletion of Vhl and Trp53 in primary mouse embryo fibroblasts causes proliferative dysregulation and high rates of aneuploidy. Deletion of these genes in the epithelium of the kidney induces the formation of simple cysts, atypical cysts and neoplasms, and deletion in the epithelia of the genital urinary tract leads to dysplasia and tumour formation. Kidney cysts display a reduced frequency of primary cilia and atypical cysts and neoplasms exhibit a pro-proliferative signature including activation of mTORC1 and high expression of Myc, mimicking several cellular and molecular alterations seen in human ccRCC and its precursor lesions. As the majority of ccRCC is associated with functional inactivation of VHL, our findings suggest that for a subset of ccRCC, loss of p53 function represents a critical event in tumour development

    Identification and functional characterization of pVHL-dependent cell surface proteins in renal cell carcinoma

    Get PDF
    The identification of cell surface accessible biomarkers enabling diagnosis, disease monitoring, and treatment of renal cell carcinoma (RCC) is as challenging as the biology and progression of RCC is unpredictable. A hallmark of most RCC is the loss-of-function of the von Hippel-Lindau (pVHL) protein by mutation of its gene (VHL). Using the cell surface capturing (CSC) technology, we screened and identified cell surface N-glycoproteins in pVHL-negative and positive 786-O cells. One hundred six cell surface N-glycoproteins were identified. Stable isotope labeling with amino acids in cell culture-based quantification of the CSC screen revealed 23 N-glycoproteins whose abundance seemed to change in a pVHL-dependent manner. Targeted validation experiments using transcriptional profiling of primary RCC samples revealed that nine glycoproteins, including CD10 and AXL, could be directly linked to pVHL-mediated transcriptional regulation. Subsequent human tumor tissue analysis of these cell surface candidate markers showed a correlation between epithelial AXL expression and aggressive tumor phenotype, indicating that pVHL-dependent regulation of glycoproteins may influence the biologic behavior of RCC. Functional characterization of the metalloprotease CD10 in cell invasion assays demonstrated a diminished penetrating behavior of pVHL-negative 786-O cells on treatment with the CD10-specific inhibitor thiorphan. Our proteomic surfaceome screening approach in combination with transcriptional profiling and functional validation suggests pVHL-dependent cell surface glycoproteins as potential diagnostic markers for therapeutic targeting and RCC patient monitoring

    VHL gene mutations and their effects on hypoxia inducible factor HIF{alpha}: Identification of potential driver and passenger mutations

    Full text link
    Mutations of the von Hippel-Lindau gene (VHL) are frequent in clear cell renal cell carcinomas (ccRCC). Nonsense and frameshift mutations abrogate the function of the VHL protein (pVHL), whereas missense mutations can have different effects. To identify those missense mutations with functional consequences, we sequenced VHL in 256 sporadic ccRCC and identified 187 different VHL mutations of which 65 had missense mutations. Location and destabilizing effects of VHL missense mutations were determined in silico. The majority of thermodynamically destabilizing missense mutations were located in exon 1 in the core of pVHL, while protein surface mutations in exon 3 affected the interaction domains of elongin B and C. Their impact on pVHL's functionality was further investigated in vitro by stably re-introducing VHL missense mutations into a VHL null cell line and by monitoring the GFP signals after the transfection of a HIFα-GFP expression vector. pVHL's functionality ranged from no effect to complete HIF stabilization. Interestingly, Asn78Ser, Asp121Tyr, and Val130Phe selectively influenced HIF1α and HIF2α degradation. In sum, we obtained three different groups of missense mutations: one with severe destabilization of pVHL, a second without destabilizing effects on pVHL but relevance for the interaction with HIFα, elongin B, or elongin C, and a third with pVHL functions comparable to wild-type. We therefore conclude that the specific impact of missense mutations may help to distinguish between driver and passenger mutations and may explain responses of ccRCC patients to HIF targeted therapies.pVHL's functionality ranged from no effect to complete HIF stabilization. Interestingly, Asn78Ser, Asp121Tyr, and Val130Phe selectively influenced HIF1α and HIF2α degradation. In sum, we obtained three different groups of missense mutations: one with severe destabilization of pVHL, a second without destabilizing effects on pVHL but relevance for the interaction with HIFα, elongin B, and elongin C, and a third with pVHL functions comparable to wild-type. We therefore conclude that the specific impact of missense mutations may help to distinguish between driver and passenger mutations and may explain responses of ccRCC patients to HIF targeted therapies

    Next Generation Sequencing of Reactive Stroma and Residual Breast Cancer Cells in Tumor Bed after Neoadjuvant Chemotherapy

    No full text
    Primary systemic or neoadjuvant chemotherapy of breast cancer has become a standard therapy option in locally advanced or predefined intrinsic subtypes such as triple negative or Her2 positive breast cancer. Neoadjuvant chemotherapy can result in complete pathological response without residual tumor cells (tumor bed) or partial response and non-response with different amounts of reactive stroma and residual tumor cells. The interaction between therapy regimens and tumoral driver mutations have been extensively studied, although the reactive stroma of the tumor bed received less attention. In this study, we characterized the mutational status of residual breast cancer cells and reactive tumor stroma devoid of residual tumor cells in partial or non-responders using next generation sequencing. Twenty-one post-therapeutic breast surgical specimens after neoadjuvant chemotherapy underwent pathogenic driver-mutation screening using microdissected residual breast cancer cells and in reactive stroma adjacent to tumor bed areas. In reactive stroma, no mutations could be validated. In residual breast cancer cells, mutations were detected in sixteen of twenty-one cases (76%). In nine of these twenty-one cases (43%), pathogenic driver mutations (PIK3CA, PTEN, TP53, FN1, PLAG1) were identified. Pathogenic driver-mutations are exclusively restricted to residual carcinoma cells and are absent in reactive stroma independently from intrinsic breast cancer subtypes or tumor stage. These data suggest that the absence of pathogenic mutations in a tumor bed without residual tumor cells may have prognostic implications after neoadjuvant chemotherapy

    TP53 mutations are common in all subtypes of epithelial ovarian cancer and occur concomitantly with KRAS mutations in the mucinous type

    Full text link
    Aims Epithelial ovarian cancer (EOC) can be classified into four major types (serous, endometrioid, clear cell, mucinous). The prevalence of driver gene mutations in the different subtypes is controversial. High-grade serous carcinomas show frequent TP53 mutations, whereas KRAS and BRAF mutations are less common. In non-serous EOC, the relevance of these gene mutations remains to be elucidated. METHODS: We investigated 142 formalin-fixed, paraffin-embedded EOC, including serous (n=63), endometrioid (n=29), clear cell (n=25), mucinous (n=14), and others (n=11) for mutations in TP53 exons 5-8, KRAS exons 2 and 3, and BRAF exon 15 by pyro-sequencing using the GS Junior 454 platform. The mutational status was correlated with clinicopathological features and patient overall survival. RESULTS: We identified mutations in the coding region of TP53 in 51.4% (73/142), and of KRAS in 9.9% (14/142) but not of BRAF. TP53 mutations occurred frequently in high-grade serous carcinomas (58.7%), but also in mucinous (57%) and clear cell EOC (52%). TP53 mutations were associated with high-grade carcinomas (p=0.014), advanced FIGO stage (p=0.001), intraoperative residual disease >1cm (p=0.004), as well as poor overall survival (p=0.002). KRAS mutations were mainly identified in mucinous EOC (57%) and were concomitantly with TP53 mutations in five mucinous carcinomas (36%). CONCLUSIONS: TP53 gene driver mutations are a common feature of all advanced ovarian cancer subtypes, whereas BRAF mutations seem to be a rare event in EOC. KRAS mutations with synchronous TP53 mutations occur predominantly in low-grade mucinous carcinomas, suggesting a specific molecular background of this ovarian cancer type

    Loss of VHL and hypoxia provokes PAX2 up-regulation in clear cell renal cell carcinoma

    No full text
    The paired box gene 2, PAX2, encodes for a transcription factor that is up-regulated during nephrogenesis and becomes silenced in mature epithelium of the glomeruli, the proximal, and distal tubules. Reactivation of PAX2 has been frequently observed in clear cell renal cell carcinoma (ccRCC), a tumor type characterized by loss of von Hippel-Lindau (VHL) tumor suppressor function. The regulation of PAX2 expression in ccRCC is unknown
    corecore