35 research outputs found

    Hypothalamic Inhibition Of Acetyl-coa Carboxylase Stimulates Hepatic Counter-regulatory Response Independent Of Ampk Activation In Rats.

    Get PDF
    Hypothalamic AMPK acts as a cell energy sensor and can modulate food intake, glucose homeostasis, and fatty acid biosynthesis. Intrahypothalamic fatty acid injection is known to suppress liver glucose production, mainly by activation of hypothalamic ATP-sensitive potassium (K(ATP)) channels. Since all models employed seem to involve malonyl-CoA biosynthesis, we hypothesized that acetyl-CoA carboxylase can modulate the counter-regulatory response independent of nutrient availability. In this study employing immunoblot, real-time PCR, ELISA, and biochemical measurements, we showed that reduction of the hypothalamic expression of acetyl-CoA carboxylase by antisense oligonucleotide after intraventricular injection increased food intake and NPY mRNA, and diminished the expression of CART, CRH, and TRH mRNA. Additionally, as in fasted rats, in antisense oligonucleotide-treated rats, serum glucagon and ketone bodies increased, while the levels of serum insulin and hepatic glycogen diminished. The reduction of hypothalamic acetyl-CoA carboxylase also increased PEPCK expression, AMPK phosphorylation, and glucose production in the liver. Interestingly, these effects were observed without modification of hypothalamic AMPK phosphorylation. Hypothalamic ACC inhibition can activate hepatic counter-regulatory response independent of hypothalamic AMPK activation.8e6266

    TNFα-Induced Oxidative Stress and Mitochondrial Dysfunction Alter Hypothalamic Neurogenesis and Promote Appetite Versus Satiety Neuropeptide Expression in Mice

    No full text
    Maternal obesity results in programmed offspring hyperphagia and obesity. The increased offspring food intake is due in part to the preferential differentiation of hypothalamic neuroprogenitor cells (NPCs) to orexigenic (AgRP) vs. anorexigenic (POMC) neurons. The altered neurogenesis may involve hypothalamic bHLH (basic helix–loop–helix) neuroregulatory factors (Hes1, Mash1, and Ngn3). Whilst the underlying mechanism remains unclear, it is known that mitochondrial function is critical for neurogenesis and is impacted by proinflammatory cytokines such as TNFα. Obesity is associated with the activation of inflammation and oxidative stress pathways. In obese pregnancies, increased levels of TNFα are seen in maternal and cord blood, indicating increased fetal exposure. As TNFα influences neurogenesis and mitochondrial function, we tested the effects of TNFα and reactive oxidative species (ROS) hydrogen peroxide (H2O2) on hypothalamic NPC cultures from newborn mice. TNFα treatment impaired NPC mitochondrial function, increased ROS production and NPC proliferation, and decreased the protein expression of proneurogenic Mash1/Ngn3. Consistent with this, AgRP protein expression was increased and POMC was decreased. Notably, treatment with H2O2 produced similar effects as TNFα and also reduced the protein expression of antioxidant SIRT1. The inhibition of STAT3/NFκB prevented the effects of TNFα, suggesting that TNFα mediates its effects on NPCs via mitochondrial-induced oxidative stress that involves both signaling pathways

    Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver

    No full text
    The exposure to an increased supply of nutrients before birth may contribute to offspring obesity. Offspring from obese dams that chronically consume a high-fat diet present clinical features of metabolic syndrome, liver lipid accumulation and activation of c-Jun N-terminal kinases (JNK) consistent with the development of nonalcoholic fatty liver disease (NAFLD). However, in spite of the importance of the resistance to insulin for the development of NAFLD, the molecular alterations in the liver of adult offspring of obese dams are yet to be investigated. In this study, we tested the hypothesis that the consumption of excessive saturated fats during pregnancy and lactation contributes to adult hepatic metabolic dysfunction in offspring. Adult male offspring of dams fed a high-fat diet (HN) during pregnancy and lactation exhibited increased fat depot weight; increased serum insulin, tumor necrosis factor alpha and interleukin 1 beta; and reduced serum triglycerides. Liver showed increased JNK and 1 kappa B kinase phosphorylation and PEPCK expression in the adult. In addition, liver triglyceride content in the offspring 1 week after weaning and in the adult was increased. Moreover, basal ACC phosphorylation and insulin signaling were reduced in the liver from the HN group as compared to offspring of dams fed a standard laboratory chow (NN). Hormone-sensitive lipase phosphorylation (Ser565) was reduced in epididymal adipose tissue from the HN group as compared to the NN group. It is interesting that all changes observed were independent of postweaning diet in 14-week-old offspring. Therefore, these data further reinforce the importance of maternal nutrition to adult offspring health. (C) 2012 Elsevier Inc. All rights reserved.23434134

    Citrate Diminishes Hypothalamic Acetyl-coa Carboxylase Phosphorylation And Modulates Satiety Signals And Hepatic Mechanisms Involved In Glucose Homeostasis In Rats.

    No full text
    The hypothalamic AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) pathway is known to play an important role in the control of food intake and energy expenditure. Here, we hypothesize that citrate, an intermediate metabolite, activates hypothalamic ACC and is involved in the control of energy mobilization. Initially, we showed that ICV citrate injection decreased food intake and diminished weight gain significantly when compared to control and pair-fed group results. In addition, we showed that intracerebroventricular (ICV) injection of citrate diminished (80% of control) the phosphorylation of ACC, an important AMPK substrate. Furthermore, citrate treatment inhibited (75% of control) hypothalamic AMPK phosphorylation during fasting. In addition to its central effect, ICV citrate injection led to low blood glucose levels during glucose tolerance test (GTT) and high glucose uptake during hyperglycemic-euglycemic clamp. Accordingly, liver glycogen content was higher in animals given citrate (ICV) than in the control group (23.3+/-2.5 vs. 2.7+/-0.5 microg mL(-1) mg(-1), respectively). Interestingly, liver AMPK phosphorylation was reduced (80%) by the citrate treatment. The pharmacological blockade of beta3-adrenergic receptor (SR 59230A) blocked the effect of ICV citrate and citrate plus insulin on liver AMPK phosphorylation. Consistently with these results, rats treated with citrate (ICV) presented improved insulin signal transduction in liver, skeletal muscle, and epididymal fat pad. Similar results were obtained by hypothalamic administration of ARA-A, a competitive inhibitor of AMPK. Our results suggest that the citrate produced by mitochondria may modulate ACC phosphorylation in the hypothalamus, controlling food intake and coordinating a multiorgan network that controls glucose homeostasis and energy uptake through the adrenergic system.821262-7

    Intracerebroventricular Injection Of Citrate Inhibits Hypothalamic Ampk And Modulates Feeding Behavior And Peripheral Insulin Signaling.

    No full text
    We hypothesized that citrate might modulate the AMP-activated protein kinase/acetyl-CoA carboxylase (AMPK)/(ACC) pathway and participate in neuronal feeding control and glucose homeostasis. To address this issue, we injected citrate into the lateral ventricle of rats. Intracerebroventricular (ICV) injection of citrate diminished the phosphorylation of hypothalamic AMPK/ACC, increased the expression of anorexigenic neuropeptide (pro-opiomelanocortin and corticotropin-releasing hormone), elevated the level of malonyl-CoA in the hypothalamus, and reduced food intake. No change was observed in the concentration of blood insulin after the injection of citrate. With a euglycemic-hyperinsulinemic clamp, the glucose infusion rate was higher in the citrate group than in the control group (28.6+/-0.8 vs 19.3+/-0.2 mU/kg body weight/min respectively), and so was glucose uptake in skeletal muscle and the epididymal fat pad. Concordantly, insulin receptor (IR), IR substrate type 1 (IRS1), IRS2, and protein kinase B (AKT) phosphorylation in adipose tissue and skeletal muscle was improved by citrate ICV treatment. Moreover, the treatment with citrate for 7 days promoted body weight loss and decreased the adipose tissue. Our results suggest that citrate and glucose may serve as signals of energy and nutrient availability to hypothalamic cells.198157-6
    corecore