49 research outputs found

    Endothelial Membrane Remodeling Is Obligate for Anti-Angiogenic Radiosensitization during Tumor Radiosurgery

    Get PDF
    While there is significant interest in combining anti-angiogenesis therapy with conventional anti-cancer treatment, clinical trials have as of yet yielded limited therapeutic gain, mainly because mechanisms of anti-angiogenic therapy remain to a large extent unknown. Currently, anti-angiogenic tumor therapy is conceptualized to either "normalize" dysfunctional tumor vasculature, or to prevent recruitment of circulating endothelial precursors into the tumor. An alternative biology, restricted to delivery of anti-angiogenics immediately prior to single dose radiotherapy (radiosurgery), is provided in the present study.Genetic data indicate an acute wave of ceramide-mediated endothelial apoptosis, initiated by acid sphingomyelinase (ASMase), regulates tumor stem cell response to single dose radiotherapy, obligatory for tumor cure. Here we show VEGF prevented radiation-induced ASMase activation in cultured endothelium, occurring within minutes after radiation exposure, consequently repressing apoptosis, an event reversible with exogenous C(16)-ceramide. Anti-VEGFR2 acts conversely, enhancing ceramide generation and apoptosis. In vivo, MCA/129 fibrosarcoma tumors were implanted in asmase(+/+) mice or asmase(-/-) littermates and irradiated in the presence or absence of anti-VEGFR2 DC101 or anti-VEGF G6-31 antibodies. These anti-angiogenic agents, only if delivered immediately prior to single dose radiotherapy, de-repressed radiation-induced ASMase activation, synergistically increasing the endothelial apoptotic component of tumor response and tumor cure. Anti-angiogenic radiosensitization was abrogated in tumors implanted in asmase(-/-) mice that provide apoptosis-resistant vasculature, or in wild-type littermates pre-treated with anti-ceramide antibody, indicating that ceramide is necessary for this effect.These studies show that angiogenic factors fail to suppress apoptosis if ceramide remains elevated while anti-angiogenic therapies fail without ceramide elevation, defining a ceramide rheostat that determines outcome of single dose radiotherapy. Understanding the temporal sequencing of anti-angiogenic drugs and radiation enables optimized radiosensitization and design of innovative radiosurgery clinical trials

    Down-regulation of ATM protein sensitizes human prostate cancer cells to radiation-induced apoptosis

    Get PDF
    Treatment with the protein kinase C activator 12-O-tetradecanoylphorbol 12-acetate (TPA) enables radiation-resistant LNCaP human prostate cancer cells to undergo radiation-induced apoptosis, mediated via activation of the enzyme ceramide synthase ( CS) and de novo synthesis of the sphingolipid ceramide (Garzotto, M., Haimovitz-Friedman, A., Liao, W. C., White-Jones, M., Huryk, R., Heston, D. W. W., Cardon-Cardo, C., Kolesnick, R., and Fuks, Z. ( 1999) Cancer Res. 59, 5194-5201). Here, we show that TPA functions to decrease the cellular level of the ATM ( ataxia telangiectasia mutated) protein, known to repress CS activation ( Liao, W.-C., Haimovitz-Friedman, A., Persaud, R., McLoughlin, M., Ehleiter, D., Zhang, N., Gatei, M., Lavin, M., Kolesnick, R., and Fuks, Z. ( 1999) J. Biol. Chem. 274, 17908 - 17917). Gel shift analysis in LNCaP and CWR22-Rv1 cells demonstrated a significant reduction in DNA binding of the Sp1 transcription factor to the ATM promoter, and quantitative reverse transcription-PCR showed a 50% reduction of ATM mRNA between 8 and 16 h of TPA treatment, indicating that TPA inhibits ATM transcription. Furthermore, treatment of LNCaP, CWR22-Rv1, PC-3, and DU-145 human prostate cells with antisense-ATM oligonucleotides, which markedly reduced cellular ATM levels, significantly enhanced radiation-induced CS activation and apoptosis, leading to apoptosis at doses as a low as 1 gray. These data suggest that the CS pathway initiates a generic mode of radiation- induced apoptosis in human prostate cancer cells, regulated by a suppressive function of ATM, and that ATM might represent a potential target for pharmacologic inactivation with potential clinical applications in human prostate cancer

    Transforming growth factor‐β1 stimulates macrophage urokinase expression and release of matrix‐bound basic fibroblast growth factor

    No full text
    Macrophage expression of urokinase‐type plasminogen activator (uPA) appears to play a role in their release of matrix‐bound basic fibroblast growth factor (bFGF) and transforming growth factor‐β (TGF‐β). In experiments reported here, we have examined the potential regulatory effects of bFGF and TGF‐β1 on macrophage uPA expression. TGF‐β1 stimulated in a dose‐ and time‐dependent manner the expression of secreted membrane and intracellular uPA activities by a macrophage cell line (RAW264.7). When examined at similar concentrations, bFGF had little effect, and interleukin‐1α, tumor necrosis factor‐α, and monocyte colony stimulating factor had no effect on macrophage uPA expression. Exposure of macrophages to TGF‐β1 led to a rapid and sustained increase in the steady‐state levels of uPA mRNA that was independent of de novo protein synthesis and was completely inhibited by actinomycin D. However, the TGF‐β1‐induced increase in uPA mRNA was largely unaffected by subsequent incubation of cells with actinomycin D. The protein kinase C inhibitior H7 markedly reduced the ability of TGF‐β1 to stimulate expression of uPA activity. Likewise, okadaic acid and microcystin, inhibitors of serine/threonine phosphatases, potentiated the ability of TGF‐β1 to upregulate macrophage uPA expression. TGF‐β1 primed cells converted nearly all added plasminogen to plasmin and expressed sixfold more membrane‐bound plasmin than control cells. Preincubation of TGF‐β1 with either serum or methylamine‐modified α2‐macroglobulin did not affect its ability to induce macrophage uPA expression. When control and TGF‐β1‐primed macrophages were cultured on matrices containing bound125I‐bFGF, their release of 125I‐bFGF was increased five and tenfold, respectively, in the presence of plasminogen. The ability of TGF‐β to induce macrophage uPA expression and the plasmin‐dependent release of matrix‐bound bFGF may provide an indirect mechanism by which TGF‐β stimulates angiogenesis. © 1993 Wiley‐Liss, Inc. Copyright © 1993 Wiley‐Liss, Inc

    Radiation-Induced Microvascular Injury as a Mechanism of Salivary Gland Hypofunction and Potential Target for Radioprotectors

    No full text
    Radiation therapy is commonly used to treat patients with head and neck squamous cell carcinoma (HNSCC). One of the major side effects of radiotherapy is injury to the salivary glands (SG), which is thought to be mediated by microvascular dysfunction leading to permanent xerostomia. The goal of this study was to elucidate the mechanism of radiation-induced microvasculature damage and its impact on SG function. We measured bovine aortic endothelial cell (BAEC) apoptosis and ceramide production in response to 5 Gy irradiation, either alone or with reactive oxygen species (ROS) scavengers. We then investigated the effect of a single 15 Gy radiation dose on murine SG function. BAECs exposed to 5 Gy underwent apoptosis with increased ceramide production, both prevented by ROS scavengers. Among the 15 Gy irradiated mice, there was considerable weight loss, alopecia and SG hypofunction manifested by reduced saliva production and lower lysozyme levels. All of these effects, except for the lysozyme levels, were prevented by pretreatment with ROS scavengers. Microvessel density was significantly lower in the SG of irradiated mice compared to the control group, and this effect was significantly attenuated by pretreatment with Tempol. This study demonstrates that radiation-induced SG hypofunction is to a large extent mediated by microvascular dysfunction involving ceramide and ROS generation. These findings strongly suggest that ROS scavengers may serve as potential radioprotectors of SG function in patients undergoing radiotherapy for HNSCC

    Photobiomodulation effects on head and neck squamous cell carcinoma (HNSCC) in an orthotopic animal model

    No full text
    Background: Photobiomodulation (PBM) has shown efficacy in preventing and treating cancer therapy-induced mucositis and dermatitis. However, there is contradictory information regarding the effect of PBM on (pre)malignant cells, which has led to questions regarding the safety of this technique. We address this issue using an orthotopic mouse model (Cal-33) with human squamous cell carcinoma of the oral cavity. Methods: Mice with actively growing orthotopic Cal-33 head and neck carcinoma tumors were divided into 4 groups: control, PBM only, radiation therapy (RT) only, and PBM + RT. We performed three experiments: (1) PBM at 660 nm, 18.4 J/cm2, and 5 RT × 4 Gy doses delivered daily; (2) PBM at 660 nm, 18.4 J/cm2, and 1 × 15 Gy RT; and (3) PBM at 660 nm + 850 nm, 45 mW/cm2, 3.4 J/cm2, and 1 × 15 Gy RT. Mice were weighed daily and tumor volumes were evaluated by IVIS. Survival time was also evaluated. Results: Animals treated with RT survived significantly longer and had significantly smaller tumor volume when compared with the control and PBM-only treatment groups. No significant differences were noted between the RT alone and PBM + RT groups in any of the experiments. Conclusion: Our results suggest that PBM at the utilized parameters does not provide protection to the tumor from the killing effects of RT
    corecore