18 research outputs found

    Unraveling the functional role of the orphan solute carrier, SLC22A24 in the transport of steroid conjugates through metabolomic and genome-wide association studies.

    Get PDF
    Variation in steroid hormone levels has wide implications for health and disease. The genes encoding the proteins involved in steroid disposition represent key determinants of interindividual variation in steroid levels and ultimately, their effects. Beginning with metabolomic data from genome-wide association studies (GWAS), we observed that genetic variants in the orphan transporter, SLC22A24 were significantly associated with levels of androsterone glucuronide and etiocholanolone glucuronide (sentinel SNPs p-value <1x10-30). In cells over-expressing human or various mammalian orthologs of SLC22A24, we showed that steroid conjugates and bile acids were substrates of the transporter. Phylogenetic, genomic, and transcriptomic analyses suggested that SLC22A24 has a specialized role in the kidney and appears to function in the reabsorption of organic anions, and in particular, anionic steroids. Phenome-wide analysis showed that functional variants of SLC22A24 are associated with human disease such as cardiovascular diseases and acne, which have been linked to dysregulated steroid metabolism. Collectively, these functional genomic studies reveal a previously uncharacterized protein involved in steroid homeostasis, opening up new possibilities for SLC22A24 as a pharmacological target for regulating steroid levels

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Human Concentrative Nucleoside Transporter 3 (hCNT3, SLC28A3) Forms a Cyclic Homotrimer

    No full text
    Many anticancer and antiviral drugs are purine or pyrimidine analogues, which use membrane transporters to cross cellular membranes. Concentrative nucleoside transporters (CNTs) mediate the salvage of nucleosides and the transport of therapeutic nucleoside analogues across plasma membranes by coupling the transport of ligands to the sodium gradient. Of the three members of the human CNT family, CNT3 has the broadest selectivity and the widest expression profile. However, the molecular mechanisms of the transporter, including how it interacts with and translocates structurally diverse nucleosides and nucleoside analogues, are unclear. Recently, the crystal structure of vcCNT showed that the prokaryotic homologue of CNT3 forms a homotrimer. In this study, we successfully expressed and purified the wild type human homologue, hCNT3, demonstrating the homotrimer by size exclusion profiles and glutaraldehyde cross-linking. Further, by creating a series of cysteine mutants at highly conserved positions guided by comparative structure models, we cross-linked hCNT3 protomers in a cell-based assay, thus showing the existence of hCNT3 homotrimers in human cells. The presence and absence of cross-links at specific locations along TM9 informs us of important structural differences between vcCNT and hCNT3. Comparative modeling of the trimerization domain and sequence coevolution analysis both indicate that oligomerization is critical to the stability and function of hCNT3. In particular, trimerization appears to shorten the translocation path for nucleosides across the plasma membrane and may allow modulation of the transport function via allostery
    corecore