457 research outputs found
Cosmic Emulation: Fast Predictions for the Galaxy Power Spectrum
The halo occupation distribution (HOD) approach has proven to be an effective
method for modeling galaxy clustering and bias. In this approach, galaxies of a
given type are probabilistically assigned to individual halos in N-body
simulations. In this paper, we present a fast emulator for predicting the fully
nonlinear galaxy power spectrum over a range of freely specifiable HOD modeling
parameters. The emulator is constructed using results from 100 HOD models run
on a large LCDM N-body simulation, with Gaussian Process interpolation applied
to a PCA-based representation of the galaxy power spectrum. The total error is
currently ~3% (~2% in the simulation and ~1% in the emulation process) from z=1
to z=0, over the considered parameter range. We use the emulator to investigate
parametric dependencies in the HOD model, as well as the behavior of galaxy
bias as a function of HOD parameters. The emulator is publicly available at
http://www.hep.anl.gov/cosmology/CosmicEmu/emu.html.Comment: Replaced to match published version. The emulator can be downloaded
at http://www.hep.anl.gov/cosmology/CosmicEmu/emu.htm
Shrinkage Estimation of the Power Spectrum Covariance Matrix
We seek to improve estimates of the power spectrum covariance matrix from a
limited number of simulations by employing a novel statistical technique known
as shrinkage estimation. The shrinkage technique optimally combines an
empirical estimate of the covariance with a model (the target) to minimize the
total mean squared error compared to the true underlying covariance. We test
this technique on N-body simulations and evaluate its performance by estimating
cosmological parameters. Using a simple diagonal target, we show that the
shrinkage estimator significantly outperforms both the empirical covariance and
the target individually when using a small number of simulations. We find that
reducing noise in the covariance estimate is essential for properly estimating
the values of cosmological parameters as well as their confidence intervals. We
extend our method to the jackknife covariance estimator and again find
significant improvement, though simulations give better results. Even for
thousands of simulations we still find evidence that our method improves
estimation of the covariance matrix. Because our method is simple, requires
negligible additional numerical effort, and produces superior results, we
always advocate shrinkage estimation for the covariance of the power spectrum
and other large-scale structure measurements when purely theoretical modeling
of the covariance is insufficient.Comment: 9 pages, 7 figures (1 new), MNRAS, accepted. Changes to match
accepted version, including an additional explanatory section with 1 figur
The introduction of new interventional procedures in the British National Health Service : A qualitative study
Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.Peer reviewedPostprin
The Universe at Extreme Scale: Multi-Petaflop Sky Simulation on the BG/Q
Remarkable observational advances have established a compelling
cross-validated model of the Universe. Yet, two key pillars of this model --
dark matter and dark energy -- remain mysterious. Sky surveys that map billions
of galaxies to explore the `Dark Universe', demand a corresponding
extreme-scale simulation capability; the HACC (Hybrid/Hardware Accelerated
Cosmology Code) framework has been designed to deliver this level of
performance now, and into the future. With its novel algorithmic structure,
HACC allows flexible tuning across diverse architectures, including accelerated
and multi-core systems.
On the IBM BG/Q, HACC attains unprecedented scalable performance -- currently
13.94 PFlops at 69.2% of peak and 90% parallel efficiency on 1,572,864 cores
with an equal number of MPI ranks, and a concurrency of 6.3 million. This level
of performance was achieved at extreme problem sizes, including a benchmark run
with more than 3.6 trillion particles, significantly larger than any
cosmological simulation yet performed.Comment: 11 pages, 11 figures, final version of paper for talk presented at
SC1
The Clustering of AGN in the Sloan Digital Sky Survey
We present the two--point correlation function (2PCF) of narrow-line active
galactic nuclei (AGN) selected within the First Data Release of the Sloan
Digital Sky Survey. Using a sample of 13605 AGN in the redshift range 0.055 < z
< 0.2, we find that the AGN auto--correlation function is consistent with the
observed galaxy auto--correlation function on scales 0.2h^{-1}Mpc to
>100h^{-1}Mpc. The AGN hosts trace an intermediate population of galaxies and
are not detected in either the bluest (youngest) disk--dominated galaxies or
many of the reddest (oldest) galaxies. We show that the AGN 2PCF is dependent
on the luminosity of the narrow [OIII] emission line (L_{[OIII]}), with low
L_{[OIII]} AGN having a higher clustering amplitude than high L_{[OIII]} AGN.
This is consistent with lower activity AGN residing in more massive galaxies
than higher activity AGN, and L_{[OIII]} providing a good indicator of the
fueling rate. Using a model relating halo mass to black hole mass in
cosmological simulations, we show that AGN hosted by ~ 10^{12} M_{odot} dark
matter halos have a 2PCF that matches that of the observed sample. This mass
scale implies a mean black hole mass for the sample of M_{BH} ~ 10^8 M_{odot}.Comment: 5 pages, 4 figures. Accepted for publication in ApJ
- …
