25 research outputs found
Recommended from our members
Evolved transistor array robot controllers
For the first time a field programmable transistor array (FPTA) was used to evolve robot control circuits directly in analog hardware. Controllers were successfully incrementally evolved for a physical robot engaged in a series of visually guided behaviours, including finding a target in a complex environment where the goal was hidden from most locations. Circuits for recognising spoken commands were also evolved and these were used in conjunction with the controllers to enable voice control of the robot, triggering behavioural switching. Poor quality visual sensors were deliberately used to test the ability of evolved analog circuits to deal with noisy uncertain data in realtime. Visual features were coevolved with the controllers to automatically achieve dimensionality reduction and feature extraction and selection in an integrated way. An efficient new method was developed for simulating the robot in its visual environment. This allowed controllers to be evaluated in a simulation connected to the FPTA. The controllers then transferred seamlessly to the real world. The circuit replication issue was also addressed in experiments where circuits were evolved to be able to function correctly in multiple areas of the FPTA. A methodology was developed to
analyse the evolved circuits which provided insights into their operation. Comparative experiments demonstrated the superior evolvability of the transistor array medium
Recommended from our members
The evolution of handedness: why are ant colonies left- and right-handed?
No description supplie
The fairness, predictive validity and acceptability of multiple mini interview in an internationally diverse student population--a mixed methods study
BACKGROUND: International medical students, those attending medical school outside of their country of citizenship, account for a growing proportion of medical undergraduates worldwide. This study aimed to establish the fairness, predictive validity and acceptability of Multiple Mini Interview (MMI) in an internationally diverse student population. METHODS: This was an explanatory sequential, mixed methods study. All students in First Year Medicine, National University of Ireland Galway 2012 were eligible to sit a previously validated 10 station MMI. Quantitative data comprised: demographics, selection tool scores and First Year Assessment scores. Qualitative data comprised separate focus groups with MMI Assessors, EU and Non-EU students. RESULTS: 109 students participated (45% of class). Of this 41.3% (n = 45) were Non-EU and 35.8% (n = 39) did not have English as first language. Age, gender and socioeconomic class did not impact on MMI scores. Non-EU students and those for whom English was not a first language achieved significantly lower scores on MMI than their EU and English speaking counterparts (difference in mean 11.9% and 12.2% respectively, P<0.001). MMI score was associated with English language proficiency (IELTS) (r = 0.5, P<0.01). Correlations emerged between First Year results and IELTS (r = 0.44; p = 0.006; n = 38) and EU school exit exam (r = 0.52; p<0.001; n = 56). MMI predicted EU student OSCE performance (r = 0.27; p = 0.03; n = 64). In the analysis of focus group data two overarching themes emerged: Authenticity and Cultural Awareness. MMI was considered a highly authentic assessment that offered a deeper understanding of the applicant than traditional tools, with an immediate relevance to clinical practice. Cultural specificity of some stations and English language proficiency were seen to disadvantage international students. Recommendations included cultural awareness training for MMI assessors, designing and piloting culturally neutral stations, lengthening station duration and providing high quality advance information to candidates. CONCLUSION: MMI is a welcome addition to assessment armamentarium for selection, particularly with regard to stakeholder acceptability. Understanding the mediating and moderating influences for differences in performance of international candidates is essential to ensure that MMI complies with the metrics of good assessment practice and principles of both distributive and procedural justice for all applicants, irrespective of nationality and cultural background
Predictive validity of the UK clinical aptitude test in the final years of medical school:a prospective cohort study
Peer reviewedPublisher PD
Reactivity of a Dinuclear PdIComplex [Pd2(μ-PPh2)(μ2-OAc)(PPh3)2] with PPh3 : Implications for Cross-Coupling Catalysis Using the Ubiquitous Pd(OAc)2/nPPh3Catalyst System
[PdI2(μ-PPh2)(μ2-OAc)(PPh3)2] is the reduction product of PdII(OAc)2(PPh3)2, generated by reaction of ‘Pd(OAc)2’ with two equivalents of PPh3. Here, we report that the reaction of [PdI2(μ-PPh2)(μ2-OAc)(PPh3)2] with PPh3results in a nuanced disproportionation reaction, forming [Pd0(PPh3)3] and a phosphinito-bridged PdI-dinuclear complex, namely [PdI2(μ-PPh2){κ2-P,O-μ-P(O)Ph2}(κ-PPh3)2]. The latter complex is proposed to form by abstraction of an oxygen atom from an acetate ligand at Pd. A mechanism for the formal reduction of a putative PdIIdisproportionation species to the observed PdIcomplex is postulated. Upon reaction of the mixture of [Pd0(PPh)3] and [PdI2(μ-PPh2){κ2-P,O-μ-P(O)Ph2}(κ-PPh3)2] with 2-bromopyridine, the former Pd0complex undergoes a fast oxidative addition reaction, while the latter dinuclear PdIcomplex converts slowly to a tripalladium cluster, of the type [Pd3(μ-X)(μ-PPh2)2(PPh3)3]X, with an overall 4/3 oxidation stateperPd. Our findings reveal complexity associated with the precatalyst activation step for the ubiquitous ‘Pd(OAc)2’/nPPh3catalyst system, with implications for cross-coupling catalysis
Revealing the Hidden Complexity and Reactivity of Palladacyclic Precatalysts:The P(o-tolyl)3 Ligand Enables a Cocktail of Active Species Utilizing the Pd(II)/Pd(IV) and Pd(0)/Pd(II) Pathways for Efficient Catalysis
The ligand, P(o-tolyl)3, is ubiquitous in applied synthetic chemistry and catalysis, particularly in Pd-catalyzed processes, which typically include Pd(OAc)2 (most commonly used as Pd3(OAc)6) as a precatalyst. The Herrmann-Beller palladacycle [Pd(C^P)(μ2-OAc)]2 (where C^P = monocyclopalladated P(o-tolyl)3) is easily formed from reaction of Pd(OAc)2 with P(o-tolyl)3. The mechanisms by which this precatalyst system operates are inherently complex, with studies previously implicating Pd nanoparticles (PdNPs) as reservoirs for active Pd(0) species in arylative cross-coupling reactions. In this study, we reveal the fascinating, complex, and nontrivial behavior of the palladacyclic group. First, in the presence of hydroxide base, [Pd(C^P)(μ2-OAc)]2 is readily converted into an activated form, [Pd(C^P)(μ2-OH)]2, which serves as a conduit for activation to catalytically relevant species. Second, palladacyclization imparts unique stability for catalytic species under reaction conditions, bringing into play a Pd(II)/Pd(IV) cross-coupling mechanism. For a benchmark Suzuki-Miyaura cross-coupling (SMCC) reaction, there is a shift from a mononuclear Pd catalytic pathway to a PdNP-controlled catalytic pathway during the reaction. The activation pathway of [Pd(C^P)(μ2-OH)]2 has been studied using an arylphosphine-stabilized boronic acid and low-temperature NMR spectroscopic analysis, which sheds light on the preactivation step, with water and/or acid being critical for the formation of active Pd(0) and Pd(II) species. In situ reaction monitoring has demonstrated that there is a sensitivity to the structure of the arylboron species in the presence of pinacol. This work, taken together, highlights the mechanistic complexity accompanying the use of palladacyclic precatalyst systems. It builds on recent findings involving related Pd(OAc)2/PPh3 precatalyst systems which readily form higher order Pdn clusters and PdNPs under cross-coupling reaction conditions. Thus, generally, one needs to be cautious with the assumption that Pd(OAc)2/tertiary phosphine mixtures cleanly deliver mononuclear “Pd(0)Ln” species and that any assessment of individual phosphine ligands may need to be taken on a case-by-case basis
THE NATURAL WAY TO EVOLVE HARDWARE
Artificial evolution can automatically derive the configuration of a reconfigurable hardware system such that it performs a given task. Individuals of the evolving population are evaluated when instantiated as real circuits, so if constraints inherent to human design (but not to evolution) are dropped, then the natural physical dynamics of the hardware can be exploited in new ways. The notion of an artificially evolving `species' (SAGA) allows the open-ended incremental evolution of complex circuits. Theoretical arguments are given, as well as the real-world example of an evolved hardware robot controller