5 research outputs found

    Consequences of Water between Two Hydrophobic Surfaces on Adhesion and Wetting

    No full text
    The contact of two hydrophobic surfaces in water is of importance in biology, catalysis, material science, and geology. A tenet of hydrophobic attraction is the release of an ordered water layer, leading to a dry contact between two hydrophobic surfaces. Although the water-free contact has been inferred from numerous experimental and theoretical studies, this has not been directly measured. Here, we use surface sensitive sum frequency generation spectroscopy to directly probe the contact interface between hydrophobic poly­(dimethylsiloxane) (PDMS) and two hydrophobic surfaces (a self-assembled monolayer, OTS, and a polymer coating, PVNODC). We show that the interfacial structures for OTS and PVNODC are identical in dry contact but that they differ dramatically in wet contact. In water, the PVNODC surface partially rearranges at grain boundaries, trapping water at the contact interface leading to a 50% reduction in adhesion energy compared to OTS–PDMS contact. The Young–Dupré equation, used extensively to calculate the thermodynamic work of adhesion, predicts no differences between the adhesion energy for these two hydrophobic surfaces, indicating a failure of this well-known equation when there is a heterogeneous contact. This study exemplifies the importance of interstitial water in controlling adhesion and wetting

    Peptide-Functionalized Oxime Hydrogels with Tunable Mechanical Properties and Gelation Behavior

    No full text
    We demonstrate the formation of polyethylene glycol (PEG) based hydrogels via oxime ligation and the photoinitiated thiol–ene 3D patterning of peptides within the hydrogel matrix postgelation. The gelation process and final mechanical strength of the hydrogels can be tuned using pH and the catalyst concentration. The time scale to reach the gel point and complete gelation can be shortened from hours to seconds using both pH and aniline catalyst, which facilitates the tuning of the storage modulus from 0.3 to over 15 kPa. Azide- and alkene-functionalized hydrogels were also synthesized, and we have shown the post gelation “click”-type Huisgen 1,3 cycloaddition and thiolene-based radical reactions for spatially defined peptide incorporation. These materials are the initial demonstration for translationally relevant hydrogel materials that possess tunable mechanical regimes attractive to soft tissue engineering and possess atom neutral chemistries attractive for post gelation patterning in the presence or absence of cells

    Adhesion Properties of Catechol-Based Biodegradable Amino Acid-Based Poly(ester urea) Copolymers Inspired from Mussel Proteins

    No full text
    Amino acid-based poly­(ester urea) (PEU) copolymers functionalized with pendant catechol groups that address the need for strongly adhesive yet degradable biomaterials have been developed. Lap-shear tests with aluminum adherends demonstrated that these polymers have lap-shear adhesion strengths near 1 MPa. An increase in lap-shear adhesive strength to 2.4 MPa was achieved upon the addition of an oxidative cross-linker. The adhesive strength on porcine skin adherends was comparable with commercial fibrin glue. Interfacial energies of the polymeric materials were investigated via contact angle measurements and Johnson–Kendall–Roberts (JKR) technique. The JKR work of adhesion was consistent with contact angle measurements. The chemical and physical properties of PEUs can be controlled using different diols and amino acids, making the polymers candidates for the development of biological glues for use in clinical applications
    corecore