64 research outputs found

    Hadamard Renormalisation of the Stress Energy Tensor on the Horizons of a Spherically Symmetric Black Hole Space-Time

    Get PDF
    We consider a quantum field which is in a Hartle-Hawking state propagating in a general spherically symmetric black hole space-time. We make use of uniform approximations to the radial equation to calculate the components of the stress tensor, renormalized using the Hadamard form of the Green's function, on the horizons of this space-time. We then specialize these results to the case of the `lukewarm' Reissner-Nordstrom-de Sitter black hole and derive some conditions on the stress tensor for the regularity of the Hartle-Hawking state.Comment: 18 pages, minor changes to introduction and conclusions, typos correcte

    Transport Equation Approach to Calculations of Hadamard Green functions and non-coincident DeWitt coefficients

    Full text link
    Building on an insight due to Avramidi, we provide a system of transport equations for determining key fundamental bi-tensors, including derivatives of the world-function, \sigma(x,x'), the square root of the Van Vleck determinant, \Delta^{1/2}(x,x'), and the tail-term, V(x,x'), appearing in the Hadamard form of the Green function. These bi-tensors are central to a broad range of problems from radiation reaction to quantum field theory in curved spacetime and quantum gravity. Their transport equations may be used either in a semi-recursive approach to determining their covariant Taylor series expansions, or as the basis of numerical calculations. To illustrate the power of the semi-recursive approach, we present an implementation in \textsl{Mathematica} which computes very high order covariant series expansions of these objects. Using this code, a moderate laptop can, for example, calculate the coincidence limit a_7(x,x) and V(x,x') to order (\sigma^a)^{20} in a matter of minutes. Results may be output in either a compact notation or in xTensor form. In a second application of the approach, we present a scheme for numerically integrating the transport equations as a system of coupled ordinary differential equations. As an example application of the scheme, we integrate along null geodesics to solve for V(x,x') in Nariai and Schwarzschild spacetimes.Comment: 32 pages, 5 figures. Final published version with correction to Eq. (3.24

    Quantum field theory on the Bertotti-Robinson space-time

    Get PDF
    We consider the problem of quantum field theory on the Bertotti-Robinson space-time, which arises naturally as the near horizon geometry of an extremal Reissner-Nordstrom black hole but can also arise in certain near-horizon limits of non-extremal Reissner Nordstrom space-time. The various vacuum states have been considered in the context of AdS2AdS_{2} black holes by Spradlin and Strominger who showed that the Poincare vacuum, the Global vacuum and the Hartle-Hawking vacuum are all equivalent, while the Boulware vacuum and the Schwarzschild vacuum are equivalent. We verify this by explicitly computing the Green's functions in closed form for a massless scalar field corresponding to each of these vacua. Obtaining a closed form for the Green's function corresponding to the Boulware vacuum is non-trivial, we present it here for the first time by deriving a new summation formula for associated Legendre functions that allows us to perform the mode-sum. Having obtained the propagator for the Boulware vacuum, which is a zero-temperature Green's function, we can then consider the case of a scalar field at an arbitrary temperature by an infinite image imaginary-time sum, which yields the Hartle-Hawking propagator upon setting the temperature to the Hawking temperature. Finally, we compute the renormalized stress-energy tensor for a massless scalar field in the various quantum vacua.Comment: 15 pages, to be published in PR

    The renormalized stress tensor in Kerr space-time: general results

    Get PDF
    We derive constraints on the form of the renormalized stress tensor for states on Kerr space-time based on general physical principles: symmetry, the conservation equations, the trace anomaly and regularity on (sections of) the event horizon. This is then applied to the physical vacua of interest. We introduce the concept of past and future Boulware vacua and discuss the non-existence of a state empty at both scri- and scri+. By calculating the stress tensor for the Unruh vacuum at the event horizon and at infinity, we are able to check our earlier conditions. We also discuss the difficulties of defining a state equivalent to the Hartle-Hawking vacuum and comment on the properties of two candidates for this state.Comment: 24 pages, no figures, revtex, minor changes to conclusion
    corecore