331 research outputs found

    Rubin and New Cap: Foreign Judgments and Insolvency

    Get PDF
    The full text of the lecture will be made available after 10 April 2013.</p

    Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA

    Get PDF
    DNA sequences determined from ancient organisms have high error rates, primarily due to uracil bases created by cytosine deamination. We use synthetic oligonucleotides, as well as DNA extracted from mammoth and Neandertal remains, to show that treatment with uracil–DNA–glycosylase and endonuclease VIII removes uracil residues from ancient DNA and repairs most of the resulting abasic sites, leaving undamaged parts of the DNA fragments intact. Neandertal DNA sequences determined with this protocol have greatly increased accuracy. In addition, our results demonstrate that Neandertal DNA retains in vivo patterns of CpG methylation, potentially allowing future studies of gene inactivation and imprinting in ancient organisms

    Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers

    Get PDF
    DNA built from modular repeats presents a challenge for gene synthesis. We present a solid surface-based sequential ligation approach, which we refer to as iterative capped assembly (ICA), that adds DNA repeat monomers individually to a growing chain while using hairpin ‘capping’ oligonucleotides to block incompletely extended chains, greatly increasing the frequency of full-length final products. Applying ICA to a model problem, construction of custom transcription activator-like effector nucleases (TALENs) for genome engineering, we demonstrate efficient synthesis of TALE DNA-binding domains up to 21 monomers long and their ligation into a nuclease-carrying backbone vector all within 3 h. We used ICA to synthesize 20 TALENs of varying DNA target site length and tested their ability to stimulate gene editing by a donor oligonucleotide in human cells. All the TALENS show activity, with the ones >15 monomers long tending to work best. Since ICA builds full-length constructs from individual monomers rather than large exhaustive libraries of pre-fabricated oligomers, it will be trivial to incorporate future modified TALE monomers with improved or expanded function or to synthesize other types of repeat-modular DNA where the diversity of possible monomers makes exhaustive oligomer libraries impractical

    Stable Gene Targeting in Human Cells Using Single-Strand Oligonucleotides with Modified Bases

    Get PDF
    Recent advances allow multiplexed genome engineering in E. coli, employing easily designed oligonucleotides to edit multiple loci simultaneously. A similar technology in human cells would greatly expedite functional genomics, both by enhancing our ability to test how individual variants such as single nucleotide polymorphisms (SNPs) are related to specific phenotypes, and potentially allowing simultaneous mutation of multiple loci. However, oligo-mediated targeting of human cells is currently limited by low targeting efficiencies and low survival of modified cells. Using a HeLa-based EGFP-rescue reporter system we show that use of modified base analogs can increase targeting efficiency, in part by avoiding the mismatch repair machinery. We investigate the effects of oligonucleotide toxicity and find a strong correlation between the number of phosphorothioate bonds and toxicity. Stably EGFP-corrected cells were generated at a frequency of \sim0.05% with an optimized oligonucleotide design combining modified bases and reduced number of phosphorothioate bonds. We provide evidence from comparative RNA-seq analysis suggesting cellular immunity induced by the oligonucleotides might contribute to the low viability of oligo-corrected cells. Further optimization of this method should allow rapid and scalable genome engineering in human cells

    Joint Assessment of Intended and Unintended Effects of Medications: An Example Using Vascular Endothelial Growth Factor Inhibitors for Neovascular Age-Related Macular Degeneration

    Get PDF
    Objective. To estimate the net health benefits of pegaptanib and ranibizumab by considering the impact of visual acuity and unintended effects (cardiovascular and hemorrhagic events) on quality-of-life among persons with neovascular age-related macular degeneration. Methods. We designed a probabilistic decision-analytic model using published data. It employed 17 visual health states and three for unintended effects. We calculated incremental net health benefits by subtracting the harms of each medication from the benefit using the quality-adjusted life year (QALY). Results. In a hypothetical cohort of 1,000 75-year olds with new-onset bilateral age-related macular degeneration followed for ten years, the mean QALYs per patient is 3.7 for usual care, 4.2 for pegaptanib, and 4.3 for ranibizumab. Net benefits decline with increasing baseline rates of unintended effects. Interpretation. Net health benefits present a quantitative, potentially useful tool to assist patients and ophthalmologists in balancing the benefits and harms of interventions for age-related macular degeneration

    Primer Extension Capture: Targeted Sequence Retrieval from Heavily Degraded DNA Sources

    Get PDF
    We present a method of targeted DNA sequence retrieval from DNA sources which are heavily degraded and contaminated with microbial DNA, as is typical of ancient bones. The method greatly reduces sample destruction and sequencing demands relative to direct PCR or shotgun sequencing approaches. We used this method to reconstruct the complete mitochondrial DNA (mtDNA) genomes of five Neandertals from across their geographic range. The mtDNA genetic diversity of the late Neandertals was approximately three times lower than that of contemporary modern humans. Together with analyses of mtDNA protein evolution, these data suggest that the long-term effective population size of Neandertals was smaller than that of modern humans and extant great apes

    The Neandertal genome and ancient DNA authenticity

    Get PDF
    Recent advances in high-thoughput DNA sequencing have made genome-scale analyses of genomes of extinct organisms possible. With these new opportunities come new difficulties in assessing the authenticity of the DNA sequences retrieved. We discuss how these difficulties can be addressed, particularly with regard to analyses of the Neandertal genome. We argue that only direct assays of DNA sequence positions in which Neandertals differ from all contemporary humans can serve as a reliable means to estimate human contamination. Indirect measures, such as the extent of DNA fragmentation, nucleotide misincorporations, or comparison of derived allele frequencies in different fragment size classes, are unreliable. Fortunately, interim approaches based on mtDNA differences between Neandertals and current humans, detection of male contamination through Y chromosomal sequences, and repeated sequencing from the same fossil to detect autosomal contamination allow initial large-scale sequencing of Neandertal genomes. This will result in the discovery of fixed differences in the nuclear genome between Neandertals and current humans that can serve as future direct assays for contamination. For analyses of other fossil hominins, which may become possible in the future, we suggest a similar ‘boot-strap' approach in which interim approaches are applied until sufficient data for more definitive direct assays are acquired

    Data consistency in the English Hospital Episodes Statistics database

    Get PDF
    BACKGROUND: To gain maximum insight from large administrative healthcare datasets it is important to understand their data quality. Although a gold standard against which to assess criterion validity rarely exists for such datasets, internal consistency can be evaluated. We aimed to identify inconsistencies in the recording of mandatory International Statistical Classification of Diseases and Related Health Problems, tenth revision (ICD-10) codes within the Hospital Episodes Statistics dataset in England. METHODS: Three exemplar medical conditions where recording is mandatory once diagnosed were chosen: autism, type II diabetes mellitus and Parkinson's disease dementia. We identified the first occurrence of the condition ICD-10 code for a patient during the period April 2013 to March 2021 and in subsequent hospital spells. We designed and trained random forest classifiers to identify variables strongly associated with recording inconsistencies. RESULTS: For autism, diabetes and Parkinson's disease dementia respectively, 43.7%, 8.6% and 31.2% of subsequent spells had inconsistencies. Coding inconsistencies were highly correlated with non-coding of an underlying condition, a change in hospital trust and greater time between the spell with the first coded diagnosis and the subsequent spell. For patients with diabetes or Parkinson's disease dementia, the code recording for spells without an overnight stay were found to have a higher rate of inconsistencies. CONCLUSIONS: Data inconsistencies are relatively common for the three conditions considered. Where these mandatory diagnoses are not recorded in administrative datasets, and where clinical decisions are made based on such data, there is potential for this to impact patient care

    From micrograms to picograms: quantitative PCR reduces the material demands of high-throughput sequencing

    Get PDF
    Current efforts to recover the Neandertal and mammoth genomes by 454 DNA sequencing demonstrate the sensitivity of this technology. However, routine 454 sequencing applications still require microgram quantities of initial material. This is due to a lack of effective methods for quantifying 454 sequencing libraries, necessitating expensive and labour-intensive procedures when sequencing ancient DNA and other poor DNA samples. Here we report a 454 sequencing library quantification method based on quantitative PCR that effectively eliminates these limitations. We estimated both the molecule numbers and the fragment size distributions in sequencing libraries derived from Neandertal DNA extracts, SAGE ditags and bonobo genomic DNA, obtaining optimal sequencing yields without performing any titration runs. Using this method, 454 sequencing can routinely be performed from as little as 50 pg of initial material without titration runs, thereby drastically reducing costs while increasing the scope of sample throughput and protocol development on the 454 platform. The method should also apply to Illumina/Solexa and ABI/SOLiD sequencing, and should therefore help to widen the accessibility of all three platforms
    corecore