24 research outputs found

    A comparative genetic diversity analysis in mungbean (Vigna radiata L.) using inter-simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP)

    Get PDF
    Amplified fragment length polymorphism (AFLP) and inter-simple sequence repeat (ISSR) markers were used to study the DNA polymorphism in elite mungbean genotypes. A total of nine AFLP primer combination and 22 ISSR primers were used. Amplification of genomic DNA of the 30 genotypes, using AFLP analysis, yielded 300 fragments that could be scored, of which 192 were polymorphic, with an average of 21.3 polymorphic fragments per primer. Number of amplified fragments with AFLP primers ranged from 29 (E-AAC: M-CAG) to 10 (E-ACG: M-CAT). Percentage polymorphism ranged from 46.3% (E-AAC: M-CCA) to a maximum of 100% (E-AAC: M-CAC), with an average of 64%. The 22 ISSR primers used in the study produced 108 bands across 30 genotypes, of which 68 were polymorphic. The number of amplified bands varied from two UBC820) to ten URP 6F). The average numbers of bands per primer and polymorphic bands per primer were 4.9 and 3.1, respectively. Percentage polymorphism ranged from 25% (UBC844) to 85% (UBC846, UBC864, UBC895), with an average percentage polymorphism of 58.3% across all the genotypes. AFLP markers were more efficient than the ISSR assay, as they detected 64% polymorphic DNA markers in Vigna radiata as compared to 58.3% for ISSR markers. The Mantel test between the two Jaccard's similarity matrices gave r = 0.19, showing low correlation between AFLP- and ISSR-based similarities. Clustering of genotypes within groups was not similar when AFLP and ISSR derived dendrograms were compared.Key words: AFLP, ISSR, Vigna radiata (mung bean), marker index, unweighted pair-group method with arithmetic averages (UPGMA)

    Mapping and characterization of novel parthenocarpy QTLs in tomato

    Get PDF
    Parthenocarpy is the development of the fruit in absence of pollination and/or fertilization. In tomato, parthenocarpy is considered as an attractive trait to solve the problems of fruit setting under unfavorable conditions. We studied the genetics of parthenocarpy in two different lines, IL5-1 and IVT-line 1, both carrying Solanum habrochaites chromosome segments. Parthenocarpy in IL5-1 is under the control of two QTLs, one on chromosome 4 (pat4.1) and one on chromosome 5 (pat5.1). IVT-line 1 also contains two parthenocarpy QTLs, one on chromosome 4 (pat4.2) and one on chromosome 9 (pat9.1). In addition, we identified one stigma exsertion locus in IL5-1, located on the long arm of chromosome 5 (se5.1). It is likely that pat4.1, from IL5-1 and pat4.2, from IVT-line 1, both located near the centromere of chromosome 4 are allelic. By making use of the microsynteny between tomato and Arabidopsis in this genetic region, we identified ARF8 as a potential candidate gene for these two QTLs. ARF8 is known to act as an inhibitor for further carpel development in Arabidopsis, in absence of pollination/fertilization. Expression of an aberrant form of the ArabidopsisARF8 gene, in tomato, has been found to cause parthenocarpy. This candidate gene approach may lead to the first isolation of a parthenocarpy gene in tomato and will allow further use in several crop species

    The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea

    Get PDF
    Tomato (Solanum lycopersicum) is susceptible to grey mold (Botrytis cinerea). Partial resistance to this fungus has been identified in accessions of wild relatives of tomato such as Solanum habrochaites LYC4. In a previous F2 mapping study, three QTLs conferring resistance to B. cinerea (Rbcq1, Rbcq2 and Rbcq4a) were identified. As it was probable that this study had not identified all QTLs involved in resistance we developed an introgression line (IL) population (n = 30), each containing a S. habrochaites introgression in the S. lycopersicum cv. Moneymaker genetic background. On average each IL contained 5.2% of the S. habrochaites genome and together the lines provide an estimated coverage of 95%. The level of susceptibility to B. cinerea for each of the ILs was assessed in a greenhouse trial and compared to the susceptible parent S. lycopersicum cv. Moneymaker. The effect of the three previously identified loci could be confirmed and seven additional loci were detected. Some ILs contains multiple QTLs and the increased resistance to B. cinerea in these ILs is in line with a completely additive model. We conclude that this set of QTLs offers good perspectives for breeding of B. cinerea resistant cultivars and that screening an IL population is more sensitive for detection of QTLs conferring resistance to B. cinerea than the analysis in an F2 population

    The metabolic basis of pollen thermo-tolerance: Perspectives for breeding

    No full text
    Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1–3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed

    The metabolic basis of pollen thermo-tolerance: Perspectives for breeding

    No full text
    Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1–3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed.</p

    Genetic variation and correlation studies between micronutrient (Fe and Zn), protein content and yield attributing traits in mungbean (Vigna. radiata L.)

    No full text
    Mungbean can effectively contribute in alleviation of iron, zinc and protein malnutrition as it is a source of micronutrients and protein. To improve this cultivars have to be developed which are rich in micronutrients and protein. But in general more focus is given to quantitative traits such as yield. Breeding mungbean for enhanced grain nutrients is still in its startup phase. The present study was carried out to access genetic variation for both quantitative as qualitative traits. The correlation between important traits such as yield and Fe, Zn, protein content was calculated. A positive correlation was found between iron and zinc content (r = 0.47) whereas no significant correlation with grain yield was observed indicating no compromise of yield for improving quality. Breeding a cultivar which is nutritionally improved along with high yield is therefore possible. A few promising cultivars with high micronutrients, protein and yield were identified. These cultivars can be used in specific breeding programs aiming at nutrient-rich high yielding cultivars
    corecore