132 research outputs found
Ion induced fragmentation of biomolecular systems at low collision energies
In this paper, we present results of different collision experiments between multiply charged ions at low collision energies (in the keV-region) and biomolecular systems. This kind of interaction allows to remove electrons form the biomolecule without transferring a large amount of vibrational excitation energy. Nevertheless, following the ionization of the target, fragmentation of biomolecular species may occur. It is the main objective of this work to study the physical processes involved in the dissociation of highly electronically excited systems. In order to elucidate the intrinsic properties of certain biomolecules (porphyrins and amino acids) we have performed experiments in the gas phase with isolated systems. The obtained results demonstrate the high stability of porphyrins after electron removal. Furthermore, a dependence of the fragmentation pattern produced by multiply charged ions on the isomeric structure of the alanine molecule has been shown. By considering the presence of other surrounding biomolecules (clusters of nucleobases), a strong influence of the environment of the biomolecule on the fragmentation channels and their modification, has been clearly proven. This result is explained, in the thymine and uracil case, by the formation of hydrogen bonds between O and H atoms, which is known to favor planar cluster geometries.</p
Irradiation of benzene molecules by ion-induced and light-induced intense fields
Benzene, with its sea of delocalized -electrons in the valence orbitals,
is identified as an example of a class of molecules that enable establishment
of the correspondence between intense ion-induced and laser-light-induced
fields in experiments that probe ionization dynamics in temporal regimes
spanning the attosecond and picosecond ranges.Comment: 4 ps figure
Primary processes: from atoms to diatomic molecules and clusters
International audienceThis article presents a short review of the main progresses achieved at the GANIL facilities during the last thirty years in the field of ion-atom and ion-diatomic molecule collisions. Thanks to the wide range of projectile energies and species available on the different beam lines of the facility, elementary processes such as electron capture, ionization and excitation have been extensively studied. Beside primary collision mechanisms, the relaxation processes of the collision partners after the collision have been another specific source of interest. Progresses on other fundamental processes such as Young type interferences induced by ion-molecule collisions or shake off ionization resulting from nuclear beta decay are also presented. 1. Introduction For the electronic structures of atoms and molecules, precise theoretical knowledge and high-resolution experimental data are available. But the complete understanding of dynamic processes in atomic collisions remains a challenge, due to large theoretical problems in describing time-dependent many-particle reactions, and to experimental difficulties in performing complete experiments in which all relevant quantities are accessible. Elementary collisions involving ions, atoms and molecules play an important role in many gaseous and plasma environments, where they provide both the heating and cooling mechanisms. The study of such collisions is thus not only of fundamental importance, it is also essential for the understanding of large-scale systems such as astrophysical plasmas, planetary atmospheres, gas discharge lasers, semiconductor processing plasmas, and fusion plasmas. Collisions between ions and atoms (or simple molecules) give also access to the elementary processes responsible for energy transfer in ion-matter and ion-biological molecule collisions. Complete knowledge of these elementary processes is thus of primordial importance for ion induced modification of materials as well as for radiolysis, radiotherapy and biological damages due to radiation exposure
- …