21,101 research outputs found

    High transverse momentum suppression and surface effects in Cu+Cu and Au+Au collisions within the PQM model

    Full text link
    We study parton suppression effects in heavy-ion collisions within the Parton Quenching Model (PQM). After a brief summary of the main features of the model, we present comparisons of calculations for the nuclear modification and the away-side suppression factor to data in Au+Au and Cu+Cu collisions at 200 GeV. We discuss properties of light hadron probes and their sensitivity to the medium density within the PQM Monte Carlo framework.Comment: Comments: 6 pages, 8 figures. To appear in the proceedings of Hot Quarks 2006: Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions, Villasimius, Italy, 15-20 May 200

    Nuclear modification at sqrt{s_{NN}}=17.3 GeV, measured at NA49

    Full text link
    Transverse momentum spectra up to 4.5 GeV/c were measured around midrapidity in Pb+Pb reactions at sqrt{s_{NN}}=17.3 GeV, for pi^{+/-}, p, pbar and K^{+/-}, by the NA49 experiment. The nuclear modification factors R_{AA}, R_{AA/pA} and R_{CP} were extracted and are compared to RHIC results at sqrt{s_{NN}}=200 GeV. The modification factor R_{AA} shows a rapid increase with transverse momentum in the covered region. The modification factor R_{CP} shows saturation well below unity in the pi^{+/-} channel. The extracted R_{CP} values follow the 200 GeV RHIC results closely in the available transverse momentum range for all particle species. For pi^{+/-} above 2.5 GeV/c transverse momentum, the measured suppression is smaller than that observed at RHIC. The nuclear modification factor R_{AA/pA} for pi^{+/-} stays well below unity.Comment: Proceedings of Quark Matter 2008 conferenc

    Schwinger Algebra for Quaternionic Quantum Mechanics

    Get PDF
    It is shown that the measurement algebra of Schwinger, a characterization of the properties of Pauli measurements of the first and second kinds, forming the foundation of his formulation of quantum mechanics over the complex field, has a quaternionic generalization. In this quaternionic measurement algebra some of the notions of quaternionic quantum mechanics are clarified. The conditions imposed on the form of the corresponding quantum field theory are studied, and the quantum fields are constructed. It is shown that the resulting quantum fields coincide with the fermion or boson annihilation-creation operators obtained by Razon and Horwitz in the limit in which the number of particles in physical states NN \to \infty.Comment: 20 pages, Plain Te

    Multi-particle Correlations in Quaternionic Quantum Systems

    Full text link
    We investigate the outcomes of measurements on correlated, few-body quantum systems described by a quaternionic quantum mechanics that allows for regions of quaternionic curvature. We find that a multi-particle interferometry experiment using a correlated system of four nonrelativistic, spin-half particles has the potential to detect the presence of quaternionic curvature. Two-body systems, however, are shown to give predictions identical to those of standard quantum mechanics when relative angles are used in the construction of the operators corresponding to measurements of particle spin components.Comment: REVTeX 3.0, 16 pages, no figures, UM-P-94/54, RCHEP-94/1

    Collapse models with non-white noises

    Full text link
    We set up a general formalism for models of spontaneous wave function collapse with dynamics represented by a stochastic differential equation driven by general Gaussian noises, not necessarily white in time. In particular, we show that the non-Schrodinger terms of the equation induce the collapse of the wave function to one of the common eigenstates of the collapsing operators, and that the collapse occurs with the correct quantum probabilities. We also develop a perturbation expansion of the solution of the equation with respect to the parameter which sets the strength of the collapse process; such an approximation allows one to compute the leading order terms for the deviations of the predictions of collapse models with respect to those of standard quantum mechanics. This analysis shows that to leading order, the ``imaginary'' noise trick can be used for non-white Gaussian noise.Comment: Latex, 20 pages;references added and minor revisions; published as J. Phys. A: Math. Theor. {\bf 40} (2007) 15083-1509

    Phonon-modulated magnetic interactions and spin Tomonaga-Luttinger liquid in the p-orbital antiferromagnet CsO2

    Full text link
    The magnetic response of antiferromagnetic CsO2, coming from the p-orbital S=1/2 spins of anionic O2- molecules, is followed by 133Cs nuclear magnetic resonance across the structural phase transition occuring at Ts1=61 K on cooling. Above Ts1, where spins form a square magnetic lattice, we observe a huge, nonmonotonic temperature dependence of the exchange coupling originating from thermal librations of O2- molecules. Below Ts1, where antiferromagnetic spin chains are formed as a result of p-orbital ordering, we observe a spin Tomonaga-Luttinger-liquid behavior of spin dynamics. These two interesting phenomena, which provide rare simple manifestations of the coupling between spin, lattice and orbital degrees of freedom, establish CsO2 as a model system for molecular solids.Comment: 9 pages, 5 figures (with Supplemental Material), to appear in Physical Review Letter

    Probability distribution of the maximum of a smooth temporal signal

    Full text link
    We present an approximate calculation for the distribution of the maximum of a smooth stationary temporal signal X(t). As an application, we compute the persistence exponent associated to the probability that the process remains below a non-zero level M. When X(t) is a Gaussian process, our results are expressed explicitly in terms of the two-time correlation function, f(t)=.Comment: Final version (1 major typo corrected; better introduction). Accepted in Phys. Rev. Let

    Implications of Weak-Interaction Space Deformation for Neutrino Mass Measurements

    Get PDF
    The negative values for the squares of both electron and muon neutrino masses obtained in recent experiments are explained as a possible consequence of a change in metric within the weak-interaction volume in the energy-momentum representation. Using a model inspired by a combination of the general theory of relativity and the theory of deformation for continuous media, it is shown that the negative value of the square of the neutrino mass can be obtained without violating allowed physical limits. The consequence is that the negative value is not necessary unphysical.Comment: 12 pages, 5 figures, LaTe

    Magnetoresistance Effects in SrFeO(3-x): Dependence on Phase Composition and Relation to Magnetic and Charge Order

    Full text link
    Single crystals of iron(IV) rich oxides SrFeO(3-x) with controlled oxygen content have been studied by Moessbauer spectroscopy, magnetometry, magnetotransport measurements, Raman spectroscopy, and infrared ellipsometry in order to relate the large magnetoresistance (MR) effects in this system to phase composition, magnetic and charge order. It is shown that three different types of MR effects occur. In cubic SrFeO3 (x = 0) a large negative MR of 25% at 9 T is associated with a hitherto unknown 60 K magnetic transition and a subsequent drop in resistivity. The 60 K transition appears in addition to the onset of helical ordering at ~130 K. In crystals with vacancy-ordered tetragonal SrFeO(3-x) as majority phase (x ~0.15) a coincident charge/antiferromagnetic ordering transition near 70 K gives rise to a negative giant MR effect of 90% at 9 T. A positive MR effect is observed in tetragonal and orthorhombic materials with increased oxygen deficiency (x = 0.19, 0.23) which are insulating at low temperatures. Phase mixtures can result in a complex superposition of these different MR phenomena. The MR effects in SrFeO(3-x) differ from those in manganites as no ferromagnetic states are involved

    Jet Quenching: the medium modification of the single and double fragmentation functions

    Full text link
    The physics of the quenching of hard jets in dense matter is briefly reviewed. This is presented within the framework of the partonic medium modification of the fragmentation functions. Modifications in both deeply inelastic scattering (DIS) off large nuclei and high-energy heavy-ion collisions are presented.Comment: 4 pages, 4 figures, Proceedings of the First Meeting of the APS Topical Group on Hadronic Physics, Fermilab, Batavia, Illinois, Oct 24-26, 200
    corecore