1,007 research outputs found

    Impacts of climate change and its uncertainties on the renewable energy generation and energy demand in urban areas

    Get PDF
    This work investigates the effects of future climate uncertainties in calculating the heating and cooling demand of buildings and estimating potentials for renewable energy generation (solar PV and wind). The building stock of Lund in Sweden is considered for energy simulations and for future climate, the most recent outputs of RCA4, which is the 4th generation of the Rossby Centre regional climate model (RCM), is used considering several two representative concentration pathways (RCPs) and four global climate models (GCMs). Simulations and assessment are performed for three 30-year time periods, from 2010 until 2099. Through comparing distributions of data sets, it is found that the uncertainty induced by climate models affects the estimation of renewable energy generation more than those induced by time periods. Changes in the heating demand due to climate change and uncertainties are surprisingly low while it is very large for cooling demand. This can be because of having a good quality for buildings on the average, however this should be more investigated for other cities in Sweden

    Effect of different levels and particle sizes of perlite on serum biochemical factors of broiler chicks

    Get PDF
    The objective of this study was to investigate the effects of different levels and particle sizes of perlite in broiler chicks’ diets on serum biochemical factors. For the stated purpose, 280 day-old Ross 308 broiler chicks were allocated to seven treatments and four replications in a factorial experiment on the basis of randomized complete block design. One factor consisted of two levels (perlite particle sizes of 1.5 and 3 mm) and the other factor included three levels of perlite (1, 3 and 5% of diet). A control treatment with no perlite was also included in the experiment. Based on the results obtained, the perlite levels and particle sizes did not affect the serum Ca, P, Cl, Na and Fe, however, they influenced the serum Mg and K significantly (P < 0.05). It seems that perlite did not have any major impact on the biochemical factors of chick's serum.Key words: Perlite, aluminosilicate, particle size, serum biochemical factors

    Surgical treatment of displaced intra-articular calcaneal fracture using a single small lateral approach

    Get PDF
    The objective of this study was to evaluate the outcome of semi-open reduction and minimal internal fixation through a single small lateral approach as a minimally invasive technique for treatment of displaced intra-articular calcaneal fractures. This prospective study was conducted on eighteen patients (16 men and 2 women). The average age was 37.7 (22–55). The most common cause of injury was a fall from height in fourteen patients. Patients were operated on within a mean time of 4.8 days of admission (1–11 days) and were followed up for an average period of 24.1 months (6–39 months). Patients were evaluated clinically using the Creighton-Nebraska Heath Foundation Assessment score of Crosby and Fitzgibbons (J Bone Joint Surg (Am) 72-A:852–859, 1990). The scoring system proposed by Knirk and Jupiter was used for radiological assessment of the posterior subtalar joint (Knirk and Jupiter in J Bone Joint Surg (Am) 68-A: 647–659, 1986). The skin incision healed in all cases without necrosis, infection, or sural nerve injury. All fractures healed after an average of 8 weeks (7–10 weeks), and patients returned to the routine daily activities after an average time of 4.3 months (3–7 months). In conclusion, semi-open reduction and minimal internal fixation through a small lateral approach is an effective treatment for carefully selected cases of displaced intra-articular calcaneal fractures

    Divergence of feeding channels within the soil food web determined by ecosystem type.

    Get PDF
    Understanding trophic linkages within the soil food web (SFW) is hampered by its opacity, diversity, and limited niche adaptation. We need to expand our insight between the feeding guilds of fauna and not just count biodiversity. The soil fauna drive nutrient cycling and play a pivotal, but little understood role within both the carbon (C) and nitrogen (N) cycles that may be ecosystem dependent. Here, we define the structure of the SFW in two habitats (grassland and woodland) on the same soil type and test the hypothesis that land management would alter the SFW in these habitats. To do this, we census the community structure and use stable isotope analysis to establish the pathway of C and N through each trophic level within the ecosystems. Stable isotope ratios of C and N from all invertebrates were used as a proxy for trophic niche, and community-wide metrics were obtained. Our empirically derived C/N ratios differed from those previously reported, diverging from model predictions of global C and N cycling, which was unexpected. An assessment of the relative response of the different functional groups to the change from agricultural grassland to woodland was performed. This showed that abundance of herbivores, microbivores, and micropredators were stimulated, while omnivores and macropredators were inhibited in the grassland. Differences between stable isotope ratios and community-wide metrics, highlighted habitats with similar taxa had different SFWs, using different basal resources, either driven by root or litter derived resources. Overall, we conclude that plant type can act as a top-down driver of community functioning and that differing land management can impact on the whole SFW

    Microstructural Design of the Cast Iron via Laser Hardening with Defocused Beam of the Continuous Wave CO2 Laser

    Get PDF
    The cast iron is widely used in mechanical parts due to its good properties, as damping, good fluidity, resistance to deformation, excellent machinability and low cost. However, the number of its applications are reduced because its low corrosion, wear and friction resistance. The microstructure of the metallic materials has high influence on these properties. Laser hardening can improve these properties via designing of the microstructure. The evaluation of the laser parameter influence on the microstructural features is vital for a correct design of the microstructure and therefore, good improvement of the metallic material properties. Although the various laser parameter influence has been analysed on sundry papers, the influence of the distance from focal point and scan speed in the laser hardening microstructures has been rarely evaluated in the literature. Thus, the influence of this parameter on the microstructures generated through laser hardening is the subject matter of this work. The experiments were carried out with continuous wave carbon dioxide laser on samples of ground cast iron. The atmosphere was air flow at 0.7MPa, the laser operated at 100W and the scan rates were 1mm/s and 5mm/s. The distances to focal point of the laser beams ranged from 0.0mm to 5.6mm. The microstructures of the samples were revealed via nital and evaluated with optical microscopy. This work shown that the microstructure of gray iron cast can be designed by mean of laser hardening. In addition, laser hardened zones had various microstructures (e.g. austenitic, martensitic, pearlite and dendritic). The type of the microstructures in laser treated zones was determined by distance from focal point and scan speed. Moreover, the width and the depth of the laser hardened zones were generally enlarged with the increasing of the distance from focal point. Furthermore, the laser irradiation at slow rates, i.e. 1mm/s, produced laser hardened zones larger than laser scan at 5mm/s. In future works, the hardness, wear and friction resistance of the laser hardened samples will be evaluated because the literature review indicates that austenitic and martensitic microstructures show high values of these properties

    Pessimistic Software Lock-Elision

    Get PDF
    Read-write locks are one of the most prevalent lock forms in concurrent applications because they allow read accesses to locked code to proceed in parallel. However, they do not offer any parallelism between reads and writes. This paper introduces pessimistic lock-elision (PLE), a new approach for non-speculatively replacing read-write locks with pessimistic (i.e. non-aborting) software transactional code that allows read-write concurrency even for contended code and even if the code includes system calls. On systems with hardware transactional support, PLE will allow failed transactions, or ones that contain system calls, to preserve read-write concurrency. Our PLE algorithm is based on a novel encounter-order design of a fully pessimistic STM system that in a variety of benchmarks spanning from counters to trees, even when up to 40% of calls are mutating the locked structure, provides up to 5 times the performance of a state-of-the-art read-write lock.National Science Foundation (U.S.) (Grant 1217921

    Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure - a finite element study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Finite element analysis results will show significant differences if the model used is performed under various material properties, geometries, loading modes or other conditions. This study adopted an FE model, taking into account the possible asymmetry inherently existing in the spine with respect to the sagittal plane, with a more geometrically realistic outline to analyze and compare the biomechanical behaviour of the lumbar spine with regard to the facet force and intradiscal pressure, which are associated with low back pain symptoms and other spinal disorders. Dealing carefully with the contact surfaces of the facet joints at various levels of the lumbar spine can potentially help us further ascertain physiological behaviour concerning the frictional effects of facet joints under separate loadings or the responses to the compressive loads in the discs.</p> <p>Methods</p> <p>A lumbar spine model was constructed from processes including smoothing the bony outline of each scan image, stacking the boundary lines into a smooth surface model, and subsequent further processing in order to conform with the purpose of effective finite element analysis performance. For simplicity, most spinal components were modelled as isotropic and linear materials with the exception of spinal ligaments (bilinear). The contact behaviour of the facet joints and changes of the intradiscal pressure with different postures were analyzed.</p> <p>Results</p> <p>The results revealed that asymmetric responses of the facet joint forces exist in various postures and that such effect is amplified with larger loadings. In axial rotation, the facet joint forces were relatively larger in the contralateral facet joints than in the ipsilateral ones at the same level. Although the effect of the preloads on facet joint forces was not apparent, intradiscal pressure did increase with preload, and its magnitude increased more markedly in flexion than in extension and axial rotation.</p> <p>Conclusions</p> <p>Disc pressures showed a significant increase with preload and changed more noticeably in flexion than in extension or in axial rotation. Compared with the applied preloads, the postures played a more important role, especially in axial rotation; the facet joint forces were increased in the contralateral facet joints as compared to the ipsilateral ones at the same level of the lumbar spine.</p
    corecore