17 research outputs found

    Epistasis between FLG and IL4R genes on the risk of allergic sensitization: results from two population-based birth cohort studies

    Get PDF
    Immune-specifc genes as well as genes responsible for the formation and integrity of the epidermal barrier have been implicated in the pathogeneses of allergic sensitization. This study sought to determine whether an epistatic efect (gene-gene interaction) between genetic variants within interleukin 4 receptor (IL4R) and flaggrin (FLG) genes predispose to the development of allergic sensitization. Data from two birth cohort studies were analyzed, namely the Isle of Wight (IOW; n=1,456) and the Manchester Asthma and Allergy Study (MAAS; n=1,058). In the IOW study, one interaction term (IL4R rs3024676×FLG variants) showed statistical signifcance (interaction term: P=0.003). To illustrate the observed epistasis, stratifed analyses were performed, which showed that FLG variants were associated with allergic sensitization only among IL4R rs3024676 homozygotes (OR, 1.97; 95% CI, 1.27–3.05; P=0.003). In contrast, FLG variants efect was masked among IL4R rs3024676 heterozygotes (OR, 0.53; 95% CI, 0.22–1.32; P=0.175). Similar results were demonstrated in the MAAS study. Epistasis between immune (IL4R) and skin (FLG) regulatory genes exist in the pathogenesis of allergic sensitization. Hence, genetic susceptibility towards defective epidermal barrier and deviated immune responses could work together in the development of allergic sensitization

    Molecular detection of rifampin and isoniazid resistance to guide chronic TB patient management in Burkina Faso

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug-resistant tuberculosis (DR-TB) is considered a real threat to the achievement of TB control. Testing of mycobacterial culture and testing of drug susceptibility (DST) capacity are limited in resource-poor countries, therefore inadequate treatment may occur, favouring resistance development. We evaluated the molecular assay GenoType<sup>® </sup>MTBDR<it>plus </it>(Hain Lifescience, Germany) in order to detect DR-TB directly in clinical specimens as a means of providing a more accurate management of chronic TB patients in Burkina Faso, a country with a high TB-HIV co-infection prevalence.</p> <p>Methods</p> <p>Samples were collected in Burkina Faso where culture and DST are not currently available, and where chronic cases are therefore classified and treated based on clinical evaluation and sputum-smear microscopy results. One hundred and eight chronic TB patients (sputum smear-positive, after completing a re-treatment regimen for pulmonary TB under directly observed therapy) were enrolled in the study from December 2006 to October 2008. Two early morning sputum samples were collected from each patient, immediately frozen, and shipped to Italy in dry ice. Samples were decontaminated, processed for smear microscopy and DNA extraction. Culture was attempted on MGIT960 (Becton Dickinson, Cockeysville, USA) and decontaminated specimens were analyzed for the presence of mutations conferring resistance to rifampin and isoniazid by the molecular assay GenoType<sup>® </sup>MTBDR<it>plus</it>.</p> <p>Results</p> <p>We obtained a valid molecular test result in 60/61 smear-positive and 47/47 smear-negative patients.</p> <p>Among 108 chronic TB cases we identified patients who (i) harboured rifampin- and isoniazid-susceptible strains (n 24), (ii) were negative for MTB complex DNA (n 24), and (iii) had non-tuberculous mycobacteria infections (n 13). The most represented mutation conferring rifampin-resistance was the D516V substitution in the hotspot region of the <it>rpoB </it>gene (43.8% of cases). Other mutations recognized were the H526D (15.6%), the H526Y (15.6%), and the S531L (9.4%).</p> <p>All isoniazid-resistant cases (n 36) identified by the molecular assay were carrying a S315T substitution in the <it>katG </it>gene. In 41.7% of cases, a mutation affecting the promoter region of the <it>inhA </it>gene was also detected.</p> <p>Conclusion</p> <p>The GenoType<sup>® </sup>MTBDR<it>plus </it>assay performed directly on sputum specimens improves the management of chronic TB cases allowing more appropriate anti-TB regimens.</p

    Status of Biodiversity in the Baltic Sea

    Get PDF
    The brackish Baltic Sea hosts species of various origins and environmental tolerances. These immigrated to the sea 10,000 to 15,000 years ago or have been introduced to the area over the relatively recent history of the system. The Baltic Sea has only one known endemic species. While information on some abiotic parameters extends back as long as five centuries and first quantitative snapshot data on biota (on exploited fish populations) originate generally from the same time, international coordination of research began in the early twentieth century. Continuous, annual Baltic Sea-wide long-term datasets on several organism groups (plankton, benthos, fish) are generally available since the mid-1950s. Based on a variety of available data sources (published papers, reports, grey literature, unpublished data), the Baltic Sea, incl. Kattegat, hosts altogether at least 6,065 species, including at least 1,700 phytoplankton, 442 phytobenthos, at least 1,199 zooplankton, at least 569 meiozoobenthos, 1,476 macrozoobenthos, at least 380 vertebrate parasites, about 200 fish, 3 seal, and 83 bird species. In general, but not in all organism groups, high sub-regional total species richness is associated with elevated salinity. Although in comparison with fully marine areas the Baltic Sea supports fewer species, several facets of the system's diversity remain underexplored to this day, such as micro-organisms, foraminiferans, meiobenthos and parasites. In the future, climate change and its interactions with multiple anthropogenic forcings are likely to have major impacts on the Baltic biodiversity
    corecore