14 research outputs found
H2AX phosphorylation at the sites of DNA double-strand breaks in cultivated mammalian cells and tissues
A sequence variant of histone H2A called H2AX is one of the key components of chromatin involved in DNA damage response induced by different genotoxic stresses. Phosphorylated H2AX (γH2AX) is rapidly concentrated in chromatin domains around DNA double-strand breaks (DSBs) after the action of ionizing radiation or chemical agents and at stalled replication forks during replication stress. γH2AX foci could be easily detected in cell nuclei using immunofluorescence microscopy that allows to use γH2AX as a quantitative marker of DSBs in various applications. H2AX is phosphorylated in situ by ATM, ATR, and DNA-PK kinases that have distinct roles in different pathways of DSB repair. The γH2AX serves as a docking site for the accumulation of DNA repair proteins, and after rejoining of DSBs, it is released from chromatin. The molecular mechanism of γH2AX dephosphorylation is not clear. It is complicated and requires the activity of different proteins including phosphatases and chromatin-remodeling complexes. In this review, we summarize recently published data concerning the mechanisms and kinetics of γH2AX loss in normal cells and tissues as well as in those deficient in ATM, DNA-PK, and DSB repair proteins activity. The results of the latest scientific research of the low-dose irradiation phenomenon are presented including the bystander effect and the adaptive response estimated by γH2AX detection in cells and tissues
The process and lessons of exchanging and managing in-vitro elite germplasm to combat CBSD and CMD in Eastern and Southern Africa
Varieties with resistance to both cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) can reverse food and income security threats affecting the rural poor in Eastern and Southern Africa. The International Institute of Tropical Agriculture is leading a partnership of five national (Malawi, Mozambique, Kenya, Tanzania and Uganda) cassava breeding programs to exchange the most elite germplasm resistant to both CMD and CBSD. This poster documents the process and the key learning lessons. Twenty to 25 stem cuttings of 31 clones comprising of 25 elite clones (5 per country), two standard checks (Kibandameno from Kenya and Albert from Tanzania), and four national checks (Kiroba and Mkombozi from Tanzania, Mbundumali from Malawi, and Tomo from Mozambique) were cleaned and indexed for cassava viruses at both the Natural Resources Institute in the United Kingdom and Kenya Plant Health Inspectorate Services, in Kenya. About 75 in-vitro plantlets per clone were sent to Genetic Technologies International Limited, a private tissue culture lab in Kenya, and micro-propagated to ≥1500 plantlets. Formal procedures of material transfer between countries including agreements, import permission and phytosanitary certification were all ensured for germplasm exchange. At least 300 plantlets of each elite and standard check clones were sent to all partner countries, while the national checks were only sent to their respective countries of origin. In each country, the in-vitro plantlets were acclimatized under screen house conditions and transplanted for field multiplication as a basis for multi-site testing. Except for Tomo, a susceptible clone, all the clones were cleaned of the viruses. However, there was varied response to the cleaning process between clones, e.g. FN-19NL, NASE1 and Kibandameno responded slowly. Also, clones responded differently to micro-propagation protocols at GTIL, e.g. Pwani, Tajirika, NASE1, TME204 and Okhumelela responded slowly. Materials are currently being bulked at low disease pressure field sites in preparation for planting at 5-8 evaluation sites per country. The process of cleaning, tissue culture mass propagation, exchange and local hardening off/bulking has been successful for the majority of target varieties. Two key lessons derived from the process are that adequate preparations of infrastructure and trained personnel are required to manage the task, and that a small proportion of varieties are recalcitrant to tissue culture propagation
Radiations and male fertility
During recent years, an increasing percentage of male infertility has to be attributed to an array of environmental,
health and lifestyle factors. Male infertility is likely to be affected by the intense exposure to heat and extreme
exposure to pesticides, radiations, radioactivity and other hazardous substances. We are surrounded by several types
of ionizing and non-ionizing radiations and both have recognized causative effects on spermatogenesis. Since it is
impossible to cover all types of radiation sources and their biological effects under a single title, this review is
focusing on radiation deriving from cell phones, laptops, Wi-Fi and microwave ovens, as these are the most
common sources of non-ionizing radiations, which may contribute to the cause of infertility by exploring the effect
of exposure to radiofrequency radiations on the male fertility pattern. From currently available studies it is clear that
radiofrequency electromagnetic fields (RF-EMF) have deleterious effects on sperm parameters (like sperm count,
morphology, motility), affects the role of kinases in cellular metabolism and the endocrine system, and produces
genotoxicity, genomic instability and oxidative stress. This is followed with protective measures for these radiations
and future recommendations. The study concludes that the RF-EMF may induce oxidative stress with an increased
level of reactive oxygen species, which may lead to infertility. This has been concluded based on available
evidences from in vitro and in vivo studies suggesting that RF-EMF exposure negatively affects sperm quality
Survey of Third-Party Parenting Options Associated With Fertility Preservation Available to Patients With Cancer Around the Globe
PURPOSE: In the accompanying article, "Analysis of Fertility Preservation Options Available to Patients With Cancer Around the Globe," we showed that specific fertility preservation services may not be offered at various sites around the world because of cultural and legal barriers. We assessed global and regional experiences as well as the legal status of third-party reproduction and adoption to serve as a comprehensive international data set and resource for groups that wish to begin oncofertility interventions. METHODS: We provide data on the legalities of third-party assisted reproductive technologies and other family-building options in the 28 oncofertility-practicing countries surveyed. RESULTS: We found regional and country differences that will be important in the development of tailored resources for physicians and for patient brochures that are sensitive to these local restrictions and cultural norms. CONCLUSION: Because many patients first consult Web-based materials, the formal assessment of the availability of these options provides members of the global oncofertility community with data to which they might otherwise not have ready access to better serve their patients