8 research outputs found

    A novel seed treatment-based multiplication approach for cassava planting material.

    Get PDF
    Cassava (Manihot esculenta Crantz) is an important food security crop in many parts of the developing world. The crop?s high yield potential and multitude of uses?both for nutrition and processing?render cassava a promising driver for the development of rural value chains. It is traditionally propagated from stem cuttings of up to 30 cm in length, giving a multiplication rate as low as 1:10. Propagating cassava traditionally is very inefficient, which leads to challenges in the production and distribution of quality planting material and improved cultivars, greatly limiting the impact of investments in crop breeding. The work described in the present study aimed to develop a seed treatment approach to facilitate the use of shorter seed pieces, increasing the multiplication rate of cassava and thus making the crop?s seed systems more efficient. After several tests, formulation was identified, consisting of thiamethoxam 21 g ha-1, mefenoxam 1.0 g ha-1, fludioxonil 1.3 g ha-1, thiabendazole 7.5 g ha-1 and Latex 2% as a binder. Plant growing from seed pieces treated with this formulation displayed increased crop establishment and early crop vigor, leading to an improved productivity throughout a full growing cycle. This allowed to reduce the cassava seed piece size to 8 cm with no negative effects on germination and crop establishment, leading to yields comparable to those from untreated 16 cm pieces. This, in turn, will allow to increase the multiplication ratio of cassava by a factor of up to 3. Notably, this was possible under regular field conditions and independently of any specialised treatment facilities. Compared with existing seed production protocols, the increased multiplication rates allowed for efficiency gains of between 1 to 1.9 years compared to conventional five-year cycles. We believe that the technology described here holds considerable promise for developing more reliable and remunerative delivery channels for quality cassava planting material and improved genetics

    Mutations in DNA polymerase δ subunit 1 co-segregate with CMD2-type resistance to Cassava Mosaic Geminiviruses

    Full text link
    Cassava mosaic disease (CMD) suppresses cassava yields across the tropics. The dominant CMD2 locus confers resistance to cassava mosaic geminiviruses. It has been reported that CMD2-type landraces lose resistance after regeneration through de novo morphogenesis. As full genome bisulfite sequencing failed to uncover an epigenetic mechanism for this loss of resistance, whole genome sequencing and genetic variant analysis was performed and the CMD2 locus was fine-mapped to a 190 kilobase interval. Collectively, these data indicate that CMD2-type resistance is caused by a nonsynonymous, single nucleotide polymorphism in DNA polymerase δ subunit 1 (MePOLD1) located within this region. Virus-induced gene silencing of MePOLD1 in a CMD-susceptible cassava variety produced a recovery phenotype typical of CMD2-type resistance. Analysis of other CMD2-type cassava varieties identified additional candidate resistance alleles within MePOLD1. Genetic variation of MePOLD1, therefore, could represent an important genetic resource for resistance breeding and/or genome editing, and elucidating mechanisms of resistance to geminiviruses

    The process and lessons of exchanging and managing in-vitro elite germplasm to combat CBSD and CMD in Eastern and Southern Africa

    Get PDF
    Varieties with resistance to both cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) can reverse food and income security threats affecting the rural poor in Eastern and Southern Africa. The International Institute of Tropical Agriculture is leading a partnership of five national (Malawi, Mozambique, Kenya, Tanzania and Uganda) cassava breeding programs to exchange the most elite germplasm resistant to both CMD and CBSD. This poster documents the process and the key learning lessons. Twenty to 25 stem cuttings of 31 clones comprising of 25 elite clones (5 per country), two standard checks (Kibandameno from Kenya and Albert from Tanzania), and four national checks (Kiroba and Mkombozi from Tanzania, Mbundumali from Malawi, and Tomo from Mozambique) were cleaned and indexed for cassava viruses at both the Natural Resources Institute in the United Kingdom and Kenya Plant Health Inspectorate Services, in Kenya. About 75 in-vitro plantlets per clone were sent to Genetic Technologies International Limited, a private tissue culture lab in Kenya, and micro-propagated to ≥1500 plantlets. Formal procedures of material transfer between countries including agreements, import permission and phytosanitary certification were all ensured for germplasm exchange. At least 300 plantlets of each elite and standard check clones were sent to all partner countries, while the national checks were only sent to their respective countries of origin. In each country, the in-vitro plantlets were acclimatized under screen house conditions and transplanted for field multiplication as a basis for multi-site testing. Except for Tomo, a susceptible clone, all the clones were cleaned of the viruses. However, there was varied response to the cleaning process between clones, e.g. FN-19NL, NASE1 and Kibandameno responded slowly. Also, clones responded differently to micro-propagation protocols at GTIL, e.g. Pwani, Tajirika, NASE1, TME204 and Okhumelela responded slowly. Materials are currently being bulked at low disease pressure field sites in preparation for planting at 5-8 evaluation sites per country. The process of cleaning, tissue culture mass propagation, exchange and local hardening off/bulking has been successful for the majority of target varieties. Two key lessons derived from the process are that adequate preparations of infrastructure and trained personnel are required to manage the task, and that a small proportion of varieties are recalcitrant to tissue culture propagation

    A novel seed treatment-based multiplication approach for cassava planting material.

    No full text
    Cassava (Manihot esculenta Crantz) is an important food security crop in many parts of the developing world. The crop's high yield potential and multitude of uses-both for nutrition and processing-render cassava a promising driver for the development of rural value chains. It is traditionally propagated from stem cuttings of up to 30 cm in length, giving a multiplication rate as low as 1:10. Propagating cassava traditionally is very inefficient, which leads to challenges in the production and distribution of quality planting material and improved cultivars, greatly limiting the impact of investments in crop breeding. The work described in the present study aimed to develop a seed treatment approach to facilitate the use of shorter seed pieces, increasing the multiplication rate of cassava and thus making the crop's seed systems more efficient. After several tests, formulation was identified, consisting of thiamethoxam 21 g ha-1, mefenoxam 1.0 g ha-1, fludioxonil 1.3 g ha-1, thiabendazole 7.5 g ha-1 and Latex 2% as a binder. Plant growing from seed pieces treated with this formulation displayed increased crop establishment and early crop vigor, leading to an improved productivity throughout a full growing cycle. This allowed to reduce the cassava seed piece size to 8 cm with no negative effects on germination and crop establishment, leading to yields comparable to those from untreated 16 cm pieces. This, in turn, will allow to increase the multiplication ratio of cassava by a factor of up to 3. Notably, this was possible under regular field conditions and independently of any specialised treatment facilities. Compared with existing seed production protocols, the increased multiplication rates allowed for efficiency gains of between 1 to 1.9 years compared to conventional five-year cycles. We believe that the technology described here holds considerable promise for developing more reliable and remunerative delivery channels for quality cassava planting material and improved genetics

    Mutations in DNA polymerase δ subunit 1 co-segregate with CMD2-type resistance to Cassava Mosaic Geminiviruses

    No full text
    Cassava mosaic disease (CMD) suppresses cassava yields across the tropics. The dominant CMD2 locus confers resistance to cassava mosaic geminiviruses. It has been reported that CMD2-type landraces lose resistance after regeneration through de novo morphogenesis. As full genome bisulfite sequencing failed to uncover an epigenetic mechanism for this loss of resistance, whole genome sequencing and genetic variant analysis was performed and the CMD2 locus was fine-mapped to a 190 kilobase interval. Collectively, these data indicate that CMD2-type resistance is caused by a nonsynonymous, single nucleotide polymorphism in DNA polymerase δ subunit 1 (MePOLD1) located within this region. Virus-induced gene silencing of MePOLD1 in a CMD-susceptible cassava variety produced a recovery phenotype typical of CMD2-type resistance. Analysis of other CMD2-type cassava varieties identified additional candidate resistance alleles within MePOLD1. Genetic variation of MePOLD1, therefore, could represent an important genetic resource for resistance breeding and/or genome editing, and elucidating mechanisms of resistance to geminiviruses.ISSN:2041-172

    Mutations in DNA polymerase δ subunit 1 mediate CMD2-type resistance to Cassava Mosaic Geminiviruses

    No full text
    Cassava mosaic disease suppresses cassava yields across the tropics. The dominant CMD2 locus confers resistance to the cassava mosaic geminiviruses. It has been reported that CMD2-type landraces lose resistance after regeneration through de novo morphogenesis. As full genome bisulfite sequencing failed to uncover an epigenetic mechanism for loss of resistance, we performed whole genome sequencing and genetic variant analysis and fine-mapped the CMD2 locus to a 190 kilobase interval. Data suggest that CMD2-type resistance is caused by a nonsynonymous, single nucleotide polymorphism in DNA polymerase δ subunit 1 (MePOLD1) located within this region. Virus-induced gene silencing of MePOLD1 in a Cassava mosaic disease-susceptible cassava variety produced a recovery phenotype typical of CMD2-type resistance. Analysis of other CMD2-type cassava varieties identified additional resistance alleles within MePOLD1. MePOLD1 resistance alleles represent important genetic resources for resistance breeding or genome editing, and elucidating mechanisms of resistance to geminiviruses
    corecore