6,186 research outputs found

    Study to Assess the Prevalence of Soft Drinking and its Determinants among the School going Children of Gwalior city

    Get PDF
    Background: Over the time there has been spectrum of changes in the universe. It may be at physical, chemical and cultural level. People have adopted newer life styles like their working style, clothing’s, food habits and so on. One of the pertinent example of this newer food habits is rising consumption of soft drinks rather than traditional home made drinks. This study was aimed to find out various determinants responsible for this rising trend of soft drinking so that effective intervention can be undertaken to overcome this creeping problem. Objectives: To find out the prevalence of soft drinking consumption among the students and to assess the determinants of soft drink consumption among the students. Materials and methods: It was a cross sectional study. A sample of 200 students was selected from the both govt. and private schools by stratified random sampling. Then they all were interviewed by using pre tested, semi structured proforma. Later on data was analyzed manually and by using suitable statistical software. Results: Frequent drinking of soft drinks was found more among the students of private schools than govt. (p < 0.05). A significant association was found between pocket money, TV watching and frequency of soft drinking (p< 0.05).Other reasons which were found to be responsible by far for frequent soft drinking like lack of awareness regarding hazards, frequent TV watching, desire of new taste, lack of health education from the parents side etc. Conclusion: Soft drinking consumption is creeping day by day amongst the children with out knowing their hazards. And they are the future of any country so there should be effective intervention from both sides govt. as well as parents to get rid of it at earliest

    Long-range interactions of hydrogen atoms in excited states. III. nS-1S interactions for n >= 3

    Get PDF
    The long-range interaction of excited neutral atoms has a number of interesting and surprising properties, such as the prevalence of long-range, oscillatory tails, and the emergence of numerically large can der Waals C_6 coefficients. Furthermore, the energetically quasi-degenerate nP states require special attention and lead to mathematical subtleties. Here, we analyze the interaction of excited hydrogen atoms in nS states (3 <= n <= 12) with ground-state hydrogen atoms, and find that the C_6 coefficients roughly grow with the fourth power of the principal quantum number, and can reach values in excess of 240,000 (in atomic units) for states with n = 12. The nonretarded van der Waals result is relevant to the distance range R << a_0/alpha, where a_0 is the Bohr radius and alpha is the fine-structure constant. The Casimir-Polder range encompasses the interatomic distance range a_0/alpha << R << hbar c/L, where L is the Lamb shift energy. In this range, the contribution of quasi-degenerate excited nP states remains nonretarded and competes with the 1/R^2 and 1/R^4 tails of the pole terms which are generated by lower-lying mP states with 2 <= m <= n-1, due to virtual resonant emission. The dominant pole terms are also analyzed in the Lamb shift range R >> hbar c/L. The familiar 1/R^7 asymptotics from the usual Casimir-Polder theory is found to be completely irrelevant for the analysis of excited-state interactions. The calculations are carried out to high precision using computer algebra in order to handle a large number of terms in intermediate steps of the calculation, for highly excited states.Comment: 17 pages; RevTe

    Perpendicular magnetic anisotropy in bulk and thin-film CuMnAs for antiferromagnetic memory applications

    Get PDF
    CuMnAs with perpendicular magnetic anisotropy is proposed as an active material for antiferromagnetic memory. Information can be stored in the antiferromagnetic domain state, while writing and readout can rely on the existence of the surface magnetization. It is predicted, based on first-principles calculations, that easy-axis anisotropy can be achieved in bulk CuMnAs by substituting a few percent of As atoms by Ge, Si, Al, or B. This effect is attributed to the changing occupation of certain electronic bands near the Fermi level induced by the hole doping. The calculated temperature dependence of the magnetic anisotropy does not exhibit any anomalies. Thin CuMnAs(001) films are also predicted to have perpendicular magnetic anisotropy.Comment: 5 pages, 8 figure

    Virtual Resonant Emission and Oscillatory Long-Range Tails in van der Waals Interactions of Excited States: QED Treatment and Applications

    Get PDF
    We report on a quantum electrodynamic (QED) investigation of the interaction between a ground state atom with another atom in an excited state. General expressions, applicable to any atom, are indicated for the long-range tails which are due to virtual resonant emission and absorption into and from vacuum modes whose frequency equals the transition frequency to available lower-lying atomic states. For identical atoms, one of which is in an excited state, we also discuss the mixing term which depends on the symmetry of the two-atom wave function (these evolve into either the gerade or the ungerade state for close approach), and we include all nonresonant states in our rigorous QED treatment. In order to illustrate the findings, we analyze the fine-structure resolved van der Waals interaction for nD-1S hydrogen interactions with n=8,10,12 and find surprisingly large numerical coefficients.Comment: 6 pages; RevTe

    Duality in matrix lattice Boltzmann models

    Full text link
    The notion of duality between the hydrodynamic and kinetic (ghost) variables of lattice kinetic formulations of the Boltzmann equation is introduced. It is suggested that this notion can serve as a guideline in the design of matrix versions of the lattice Boltzmann equation in a physically transparent and computationally efficient way.Comment: 12 pages, 3 figure
    • …
    corecore