168 research outputs found

    Radial collapse of carbon nanotubes for conductivity optimized polymer composites

    Get PDF
    The optimization of the electronic conduction of carbon nanotube polymer composites is studied by tuning the radial geometry of the carbon nanotubes in a compression cycle. We have investigated the structural evolution of multi-walled carbon nanotubes in a polyamide matrix as a function of applied high pressure. Combining high resolution electron microscopy and small angle neutron scattering experiments, we conclude that the nanotube radial cross-section is irreversibly deformed following applied pressures up to 5 GPa. Studying highly percolated composites we observe that the sample resistivity drastically decreases with pressure up to about 2 GPa with no further change up to the maximum 5 GPa applied pressure. An important hysteresis is observed upon decompression which leads to an enhanced electrical conductivity of the composite in all the studied compression cycles with maximum pressures ranging from 1 to 5 GPa. Modelling the radial collapse of single-walled carbon nanotubes shows that the modified radial geometry can considerably improve the electronic transport properties in contacted carbon nanotube junctions. Our results open opportunities for engineering nanotube composites by controlling the radial collapse

    Rotation Symmetry Spontaneous Breaking of Edge States in Zigzag Carbon Nanotubes

    Full text link
    Analytical solutions of the edge states were obtained for the (N, 0) type carbon nanotubes with distorted ending bonds. It was found that the edge states are mixed via the distortion. The total energies for N=5 and N>=7 are lower in the asymmetric configurations of ending bonds than those having axial rotation symmetry. Thereby the symmetry is breaking spontaneously. The results imply that the symmetry of electronic states at the apex depends on the occupation; the electron density pattern at the apex could change dramatically and could be controlled by applying an external field.Comment: 19 pages, 3 figure

    Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene

    Full text link
    The chapter generalizes results on influence of uniaxial strain and adsorption on the electron states and charge transport or localization in graphene with different configurations of imperfections (point defects): resonant (neutral) adsorbed atoms either oxygen- or hydrogen-containing molecules or functional groups, vacancies or substitutional atoms, charged impurity atoms or molecules, and distortions. To observe electronic properties of graphene-admolecules system, we applied electron paramagnetic resonance technique in a broad temperature range for graphene oxides as a good basis for understanding the electrotransport properties of other active carbons. Applied technique allowed observation of possible metal-insulator transition and sorption pumping effect as well as discussion of results in relation to the granular metal model. The electronic and transport properties are calculated within the framework of the tight-binding model along with the Kubo-Greenwood quantum-mechanical formalism. Depending on electron density and type of the sites, the conductivity for correlated and ordered adsorbates is found to be enhanced in dozens of times as compared to the cases of their random distribution. In case of the uniaxially strained graphene, the presence of point defects counteracts against or contributes to the band-gap opening according to their configurations. The band-gap behaviour is found to be nonmonotonic with strain in case of a simultaneous action of defect ordering and zigzag deformation. The amount of localized charge carriers (spins) is found to be correlated with the content of adsorbed centres responsible for the formation of potential barriers and, in turn, for the localization effects. Physical and chemical states of graphene edges, especially at a uniaxial strain along one of them, play a crucial role in electrical transport phenomena in graphene-based materials.Comment: 16 pages, 10 figure

    Tip-functionalized carbon nanotubes under electric fields

    Get PDF
    We investigated the electronic structures of chemically modified carbon nanotube tips under electric fields using density functional calculations. Hydrogen, oxygen, and hydroxyl group-terminated nanotubes have been considered as field emitters or probe tips. In the case of the open-ended tubes, the field emission originates primarily from the dangling-bond states localized at the edge, whereas the pentagonal defects are the main source of the field emission in the capped tubes. The open-ended nanotube with a zigzag edge is an efficient field emitter because of the localized electronic states around the Fermi level and the atomic alignment of carbon-carbon bonds along with external electric fields. Tip functionalization alters the local density of states as well as the chemical selectivity of nanotubes in various ways. The correlations between atomic geometries of chemically functionalized tips and their electronic structures are further discussed. We propose that a hydrogen-terminated tube would be a promising probe tip for selective chemical imaging.open252

    Chemically-induced Mobility Gaps in Graphene Nanoribbons: A Route for Upscaling Device Performances

    Full text link
    We report a first-principles based study of mesoscopic quantum transport in chemically doped graphene nanoribbons with a width up to 10 nm. The occurrence of quasibound states related to boron impurities results in mobility gaps as large as 1 eV, driven by strong electron-hole asymmetrical backscattering phenomena. This phenomenon opens new ways to overcome current limitations of graphene-based devices through the fabrication of chemically-doped graphene nanoribbons with sizes within the reach of conventional lithography.Comment: Nano Letters (in press

    Solubilization of Proteins in 2DE: An Outline

    Get PDF
    Protein solubilization for two-dimensional electrophoresis (2DE) has to break molecular interactions to separate the biological contents of the material of interest into isolated and intact polypeptides. This must be carried out in conditions compatible with the first dimension of 2DE, namely isoelectric focusing. In addition, the extraction process must enable easy removal of any nonprotein component interfering with the isoelectric focusing. The constraints brought in this process by the peculiar features of isoelectric focusing are discussed, as well as their consequences in terms of possible solutions and limits for the solubilization process

    Fangchinoline Inhibits Human Immunodeficiency Virus Type 1 Replication by Interfering with gp160 Proteolytic Processing

    Get PDF
    The introduction of highly active antiretroviral therapy has led to a significant reduction in the morbidity and mortality of acquired immunodeficiency syndrome patients. However, the emergence of drug resistance has resulted in the failure of treatments in large numbers of patients and thus necessitates the development of new classes of anti-HIV drugs. In this study, more than 200 plant-derived small-molecule compounds were evaluated in a cell-based HIV-1 antiviral screen, resulting in the identification of a novel HIV-1 inhibitor (fangchinoline). Fangchinoline, a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae, exhibited antiviral activity against HIV-1 laboratory strains NL4-3, LAI and BaL in MT-4 and PM1 cells with a 50% effective concentration ranging from 0.8 to 1.7 µM. Mechanism-of-action studies showed that fangchinoline did not exhibit measurable antiviral activity in TZM-b1 cells but did inhibit the production of infectious virions in HIV-1 cDNA transfected 293T cells, which suggests that the compound targets a late event in infection cycle. Furthermore, the antiviral effect of fangchinoline seems to be HIV-1 enve1ope-dependent, as the production of infectious HIV-1 particles packaged with a heterologous envelope, the vesicular stomatitis virus G glycoprotein, was unaffected by fangchinoline. Western blot analysis of HIV envelope proteins expressed in transfected 293T cells and in isolated virions showed that fangchinoline inhibited HIV-1 gp160 processing, resulting in reduced envelope glycoprotein incorporation into nascent virions. Collectively, our results demonstrate that fangchinoline inhibits HIV-1 replication by interfering with gp160 proteolytic processing. Fangchinoline may serve as a starting point for developing a new HIV-1 therapeutic approach
    corecore