168 research outputs found
Radial collapse of carbon nanotubes for conductivity optimized polymer composites
The optimization of the electronic conduction of carbon nanotube polymer composites is studied by tuning the radial geometry of the carbon nanotubes in a compression cycle. We have investigated the structural evolution of multi-walled carbon nanotubes in a polyamide matrix as a function of applied high pressure. Combining high resolution electron microscopy and small angle neutron scattering experiments, we conclude that the nanotube radial cross-section is irreversibly deformed following applied pressures up to 5 GPa. Studying highly percolated composites we observe that the sample resistivity drastically decreases with pressure up to about 2 GPa with no further change up to the maximum 5 GPa applied pressure. An important hysteresis is observed upon decompression which leads to an enhanced electrical conductivity of the composite in all the studied compression cycles with maximum pressures ranging from 1 to 5 GPa. Modelling the radial collapse of single-walled carbon nanotubes shows that the modified radial geometry can considerably improve the electronic transport properties in contacted carbon nanotube junctions. Our results open opportunities for engineering nanotube composites by controlling the radial collapse
Rotation Symmetry Spontaneous Breaking of Edge States in Zigzag Carbon Nanotubes
Analytical solutions of the edge states were obtained for the (N, 0) type
carbon nanotubes with distorted ending bonds. It was found that the edge states
are mixed via the distortion. The total energies for N=5 and N>=7 are lower in
the asymmetric configurations of ending bonds than those having axial rotation
symmetry. Thereby the symmetry is breaking spontaneously. The results imply
that the symmetry of electronic states at the apex depends on the occupation;
the electron density pattern at the apex could change dramatically and could be
controlled by applying an external field.Comment: 19 pages, 3 figure
Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene
The chapter generalizes results on influence of uniaxial strain and
adsorption on the electron states and charge transport or localization in
graphene with different configurations of imperfections (point defects):
resonant (neutral) adsorbed atoms either oxygen- or hydrogen-containing
molecules or functional groups, vacancies or substitutional atoms, charged
impurity atoms or molecules, and distortions. To observe electronic properties
of graphene-admolecules system, we applied electron paramagnetic resonance
technique in a broad temperature range for graphene oxides as a good basis for
understanding the electrotransport properties of other active carbons. Applied
technique allowed observation of possible metal-insulator transition and
sorption pumping effect as well as discussion of results in relation to the
granular metal model. The electronic and transport properties are calculated
within the framework of the tight-binding model along with the Kubo-Greenwood
quantum-mechanical formalism. Depending on electron density and type of the
sites, the conductivity for correlated and ordered adsorbates is found to be
enhanced in dozens of times as compared to the cases of their random
distribution. In case of the uniaxially strained graphene, the presence of
point defects counteracts against or contributes to the band-gap opening
according to their configurations. The band-gap behaviour is found to be
nonmonotonic with strain in case of a simultaneous action of defect ordering
and zigzag deformation. The amount of localized charge carriers (spins) is
found to be correlated with the content of adsorbed centres responsible for the
formation of potential barriers and, in turn, for the localization effects.
Physical and chemical states of graphene edges, especially at a uniaxial strain
along one of them, play a crucial role in electrical transport phenomena in
graphene-based materials.Comment: 16 pages, 10 figure
Tip-functionalized carbon nanotubes under electric fields
We investigated the electronic structures of chemically modified carbon nanotube tips under electric fields using density functional calculations. Hydrogen, oxygen, and hydroxyl group-terminated nanotubes have been considered as field emitters or probe tips. In the case of the open-ended tubes, the field emission originates primarily from the dangling-bond states localized at the edge, whereas the pentagonal defects are the main source of the field emission in the capped tubes. The open-ended nanotube with a zigzag edge is an efficient field emitter because of the localized electronic states around the Fermi level and the atomic alignment of carbon-carbon bonds along with external electric fields. Tip functionalization alters the local density of states as well as the chemical selectivity of nanotubes in various ways. The correlations between atomic geometries of chemically functionalized tips and their electronic structures are further discussed. We propose that a hydrogen-terminated tube would be a promising probe tip for selective chemical imaging.open252
Chemically-induced Mobility Gaps in Graphene Nanoribbons: A Route for Upscaling Device Performances
We report a first-principles based study of mesoscopic quantum transport in
chemically doped graphene nanoribbons with a width up to 10 nm. The occurrence
of quasibound states related to boron impurities results in mobility gaps as
large as 1 eV, driven by strong electron-hole asymmetrical backscattering
phenomena. This phenomenon opens new ways to overcome current limitations of
graphene-based devices through the fabrication of chemically-doped graphene
nanoribbons with sizes within the reach of conventional lithography.Comment: Nano Letters (in press
Solubilization of Proteins in 2DE: An Outline
Protein solubilization for two-dimensional electrophoresis (2DE) has to break
molecular interactions to separate the biological contents of the material of
interest into isolated and intact polypeptides. This must be carried out in
conditions compatible with the first dimension of 2DE, namely isoelectric
focusing. In addition, the extraction process must enable easy removal of any
nonprotein component interfering with the isoelectric focusing. The constraints
brought in this process by the peculiar features of isoelectric focusing are
discussed, as well as their consequences in terms of possible solutions and
limits for the solubilization process
Fangchinoline Inhibits Human Immunodeficiency Virus Type 1 Replication by Interfering with gp160 Proteolytic Processing
The introduction of highly active antiretroviral therapy has led to a significant reduction in the morbidity and mortality of acquired immunodeficiency syndrome patients. However, the emergence of drug resistance has resulted in the failure of treatments in large numbers of patients and thus necessitates the development of new classes of anti-HIV drugs. In this study, more than 200 plant-derived small-molecule compounds were evaluated in a cell-based HIV-1 antiviral screen, resulting in the identification of a novel HIV-1 inhibitor (fangchinoline). Fangchinoline, a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae, exhibited antiviral activity against HIV-1 laboratory strains NL4-3, LAI and BaL in MT-4 and PM1 cells with a 50% effective concentration ranging from 0.8 to 1.7 µM. Mechanism-of-action studies showed that fangchinoline did not exhibit measurable antiviral activity in TZM-b1 cells but did inhibit the production of infectious virions in HIV-1 cDNA transfected 293T cells, which suggests that the compound targets a late event in infection cycle. Furthermore, the antiviral effect of fangchinoline seems to be HIV-1 enve1ope-dependent, as the production of infectious HIV-1 particles packaged with a heterologous envelope, the vesicular stomatitis virus G glycoprotein, was unaffected by fangchinoline. Western blot analysis of HIV envelope proteins expressed in transfected 293T cells and in isolated virions showed that fangchinoline inhibited HIV-1 gp160 processing, resulting in reduced envelope glycoprotein incorporation into nascent virions. Collectively, our results demonstrate that fangchinoline inhibits HIV-1 replication by interfering with gp160 proteolytic processing. Fangchinoline may serve as a starting point for developing a new HIV-1 therapeutic approach
- …