125 research outputs found

    Realization of a twin beam source based on four-wave mixing in Cesium

    Full text link
    Four-wave mixing (4WM) is a known source of intense non-classical twin beams. It can be generated when an intense laser beam (the pump) and a weak laser beam (the seed) overlap in a χ(3)\chi^{(3)} medium (here cesium vapor), with frequencies close to resonance with atomic transitions. The twin beams generated by 4WM have frequencies naturally close to atomic transitions, and can be intense (gain ≫1\gg 1) even in the CW pump regime, which is not the case for PDC χ(2)\chi^{(2)} phenomenon in non-linear crystals. So, 4WM is well suited for atom-light interaction and atom-based quantum protocols. Here we present the first realization of a source of 4-wave mixing exploiting D2D_2 line of Cesium atoms.Comment: 10 pages, 10 figure

    What's wrong with this rebuttal?

    Full text link
    A recent rebuttal to criticism of Bell's analysis is shown to be defective by fault of failure to consider all hypothetical conditions input into the derivation of Bell Inequalitites.Comment: 2 page

    An analog of Heisenberg uncertainty relation in prequantum classical field theory

    Full text link
    Prequantum classical statistical field theory (PCSFT) is a model which provides a possibility to represent averages of quantum observables, including correlations of observables on subsystems of a composite system, as averages with respect to fluctuations of classical random fields. PCSFT is a classical model of the wave type. For example, "electron" is described by electronic field. In contrast to QM, this field is a real physical field and not a field of probabilities. An important point is that the prequantum field of e.g. electron contains the irreducible contribution of the background field, vacuum fluctuations. In principle, the traditional QM-formalism can be considered as a special regularization procedure: subtraction of averages with respect to vacuum fluctuations. In this paper we derive a classical analog of the Heisenberg-Robertson inequality for dispersions of functionals of classical (prequantum) fields. PCSFT Robertson-like inequality provides a restriction on the product of classical dispersions. However, this restriction is not so rigid as in QM. The quantum dispersion corresponds to the difference between e.g. the electron field dispersion and the dispersion of vacuum fluctuations. Classical Robertson-like inequality contains these differences. Hence, it does not imply such a rigid estimate from below for dispersions as it was done in QM

    Possible Experience: from Boole to Bell

    Full text link
    Mainstream interpretations of quantum theory maintain that violations of the Bell inequalities deny at least either realism or Einstein locality. Here we investigate the premises of the Bell-type inequalities by returning to earlier inequalities presented by Boole and the findings of Vorob'ev as related to these inequalities. These findings together with a space-time generalization of Boole's elements of logic lead us to a completely transparent Einstein local counterexample from everyday life that violates certain variations of the Bell inequalities. We show that the counterexample suggests an interpretation of the Born rule as a pre-measure of probability that can be transformed into a Kolmogorov probability measure by certain Einstein local space-time characterizations of the involved random variables.Comment: Published in: EPL, 87 (2009) 6000

    Extended Representations of Observables and States for a Noncontextual Reinterpretation of QM

    Full text link
    A crucial and problematical feature of quantum mechanics (QM) is nonobjectivity of properties. The ESR model restores objectivity reinterpreting quantum probabilities as conditional on detection and embodying the mathematical formalism of QM into a broader noncontextual (hence local) framework. We propose here an improved presentation of the ESR model containing a more complete mathematical representation of the basic entities of the model. We also extend the model to mixtures showing that the mathematical representations of proper mixtures does not coincide with the mathematical representation of mixtures provided by QM, while the representation of improper mixtures does. This feature of the ESR model entails that some interpretative problems raising in QM when dealing with mixtures are avoided. From an empirical point of view the predictions of the ESR model depend on some parameters which may be such that they are very close to the predictions of QM in most cases. But the nonstandard representation of proper mixtures allows us to propose the scheme of an experiment that could check whether the predictions of QM or the predictions of the ESR model are correct.Comment: 17 pages, standard latex. Extensively revised versio

    Understanding quantization: a hidden variable model

    Full text link
    We argue that to solve the foundational problems of quantum theory one has to first understand what it means to quantize a classical system. We then propose a quantization method based on replacement of deterministic c-numbers by stochastically-parameterized c-numbers. Unlike canonical quantization, the method is free from operator ordering ambiguity and the resulting quantum system has a straightforward interpretation as statistical modification of ensemble of classical trajectories. We then develop measurement without wave function collapse \`a la pilot-wave theory and point out new testable predictions.Comment: 16 pages, based on a talk given at "Emergent Quantum Mechanics (Heinz von Foerster Conference 2011)", see http://iopscience.iop.org/1742-6596/361/

    A Hilbert Space Representation of Generalized Observables and Measurement Processes in the ESR Model

    Full text link
    The extended semantic realism (ESR) model recently worked out by one of the authors embodies the mathematical formalism of standard (Hilbert space) quantum mechanics in a noncontextual framework, reinterpreting quantum probabilities as conditional instead of absolute. We provide here a Hilbert space representation of the generalized observables introduced by the ESR model that satisfy a simple physical condition, propose a generalization of the projection postulate, and suggest a possible mathematical description of the measurement process in terms of evolution of the compound system made up of the measured system and the measuring apparatus.Comment: 12 pages, Standard Latex, Minor revision
    • 

    corecore