5 research outputs found

    Mycobacterium marinum lipooligosaccharides are unique caryophyllose-containing cell wall glycolipids that inhibit tumor necrosis factor-alpha secretion in macrophages.

    No full text
    International audienceEarlier studies have reported a role for lipooligosaccharides (LOSs) in sliding motility, biofilm formation, and infection of host macrophages in Mycobacterium marinum. Although a LOS biosynthetic gene cluster has recently been identified in this species, many structural features of the different LOSs (LOS-I-IV) are still unknown. This clearly hampers assessing the contribution of each LOS in mycobacterial virulence as well as structure-function-based studies of these important cell wall-associated glycolipids. In this study, we have identified an M. marinum isolate, M. marinum 7 (Mma7), which failed to produce LOS-IV but instead accumulated large amounts of LOS-III. Local genomic comparison of the LOS biosynthetic cluster established the presence of a highly disorganized region in Mma7 compared with the standard M strain, characterized by multiple genetic lesions that are likely to be responsible for the defect in LOS-IV production in Mma7. Our results indicate that the glycosyltransferase LosA alone is not sufficient to ensure LOS-IV biosynthesis. The availability of different M. marinum strains allowed us to determine the precise structure of individual LOSs through the combination of mass spectrometric and NMR techniques. In particular, we established the presence of two related 4-C-branched monosaccharides within LOS-II to IV sequences, of which one was never identified before. In addition, we provided evidence that LOSs are capable of inhibiting the secretion of tumor necrosis factor-alpha in lipopolysaccharide-stimulated human macrophages. This unexpected finding suggests that these cell wall-associated glycolipids represent key effectors capable of interfering with the establishment of a pro-inflammatory response

    A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos

    No full text
    International audienceInfection of the zebrafish with Mycobacterium marinum is regarded as a well-established experimental model to study the pathogenicity of Mycobacterium tuberculosis. Herein, a M. marinum transposon mutant library was screened for attenuated M. marinum phenotypes using a Dictyostelium discoideum assay. In one attenuated mutant, the transposon was located within tesA, encoding a putative type II thioesterase. Thin-layer chromatography analyses indicated that the tesA::Tn mutant failed to produce two major cell wall-associated lipids. Mass spectrometry and nuclear magnetic resonance clearly established the nature of missing lipids as phthioglycol diphthioceranates and phenolic glycolipids, respectively, indicating that TesA is required for the synthesis of both lipids. When injected into the zebrafish embryo bloodstream, the mutant was found to be highly attenuated, thus validating the performance and relevance of the Dictyostelium screen. Consistent with these in vivo findings, tesA::Tn exhibited increased permeability defects in vitro, which may explain its failure to survive in host macrophages. Unexpectedly, virulence was retained when bacteria were injected into the notochord. Histological and ultrastructural studies of the infected notochord revealed the presence of actively proliferating mycobacteria, leading to larval death. This work presents for the first time the notochord as a compartment highly susceptible to mycobacterial infection

    Structural analysis of an unusual bioactive N-acylated lipo-oligosaccharide LOS-IV in Mycobacterium marinum

    No full text
    International audienceAlthough lipo-oligosaccharides (LOSs) are recognized as major parietal components in many mycobacterial species, their involvement in the host-pathogen interactions have been scarcely documented. In particular, the biological implications arising from the high degree of structural species-specificity of these glycolipids remain largely unknown. Growing recognition of the Mycobacterium marinum-Danio rerio as a specific host-pathogen model devoted to the study of the physiopathology of mycobacterial infections prompted us to elucidate the structure-to-function relationships of the elusive end-product, LOS-IV, of the LOS biosynthetic pathway in M. marinum. Combination of physicochemical and molecular modeling methods established that LOS-IV resulted from the differential transfer on the caryophyllose-containing LOS-III of a family of very unusual N-acylated monosaccharides, naturally present as different diastereoisomers. In agreement with the partial loss of pathogenecity previously reported in a LOS-IV-deficient M. marinum mutant, we demonstrated that this terminal monosaccharide conferred to LOS-IV important biological functions, including macrophage activating properties
    corecore