15 research outputs found

    Ore Genesis of the Abu Ghalaga Ferro-Ilmenite Ore Associated with Neoproterozoic Massive-Type Gabbros, South-Eastern Desert of Egypt: Evidence from Texture and Mineral Chemistry

    Get PDF
    Massif-type mafic intrusions (gabbro and anorthosite) are known for their considerable resources of vanadium-bearing iron–titanium oxide ores. Massive-type gabbroic and anorthosite rocks are frequently associated with magmatic rocks that have significant quantities of iron, titanium, and vanadium. The most promising intrusions that host Fe-Ti oxide ores are the gabbroic rocks in the south-eastern desert. The ilmenite ore deposits are hosted in arc gabbroic and anorthosite rocks. They are classified into three types, namely black ore, red ore, and disseminated ore. The black ilmenite ore is located at the deeper level, while the oxidized red ore is mainly located at or near the surface. Petrographically, the gabbro and ilmenite ores indicate a crystallization sequence of plagioclase, titaniferous pyroxene, and ilmenite. This reveals that the ilmenite is a magmatic deposit formed by the liquid gravity concentration of ilmenite following the crystallization of feldspar and pyroxene. Meanwhile, quartz, tremolite, zoisite, and opaque minerals are accessory minerals. The Fe-Ti ores are composed of ilmenite hosting exsolved hematite lamellae of variable sizes and shapes, gangue silicate minerals, and some sulfides. The X-ray diffraction (XRD) data reveal the presence of two mineral phases: ilmenite and hematite formed by the unmixing of the ferroilmenite homogeneous phase upon cooling. As a result, the ore is mostly made up of hemo-ilmenite. Using an electron microscope (SEM), as well as by observing the textures seen by the ore microscope, ilmenite is the dominant Fe-Ti oxide and contains voluminous hematite exsolved crystals. Under the scanning electron microscope, ilmenite contained intergrowths of hematite as a thin sandwich and lens shape. The formation of hematite lamellae indicates an oxidation process. Mineral chemistry-based investigations reveal late/post-magmatic activity at high temperatures. The examined ilmenite plots on the ferro-ilmenite line were created by continuous solid solution over 800 °C, whereas the analyzed magnetite and Ti-magnetite plot near the magnetite line and were formed by continuous solid solution exceeding 600 °C

    Propolis alleviates the negative effects of heat stress on egg production, egg quality, physiological and immunological aspects of laying Japanese quail.

    No full text
    The present work was carried out to investigate the effects of dietary propolis supplementation to laying Japanese quail (Coturnix coturnix japonica) on egg production, egg quality, physiological and immunological aspects under heat stress conditions. A total of 200, 21-day-old, Japanese quail females were distributed equally into standard wired cages in two identical environmentally-controlled rooms (10 cages per room, 10 birds per cage). From 29-70 d of age, the quail birds in the first room remained at a normal temperature of 24°C (C group), whereas the quail birds in the second room were kept under heat stress at 35°C (HS group). Each group was further assigned to 2 propolis subgroups (5 cages per subgroup); one of them received a basal diet without propolis supplementation (-PR subgroup), while, the other received 1 g propolis/ kg basal diet (+PR subgroup). In the present study, performance and egg production of laying quail were significantly (P<0.001) impaired by HS treatment and improved by the PR treatment. Similarly, the negative and positive effects of HS and PR, respectively, were appeared on the egg shell thickness and yolk index. Stress indicators in laying quail were significantly (P<0.001) increased by HS, while, PR significantly (P<0.05) moderated these levels in the HS+PR group when compared to the HS-PR quail group. In addition to the positive impact of PR on the plasma levels of calcium, phosphorus, and albumin, it also normalized the plasma levels of alanine aminotransferase and cholesterol in the heat-stressed quail birds. Moreover, the quail birds in the HS groups expressed lower immunological aspects than those in the C group, while, the addition of propolis to the diets enhanced the immune status of laying quail birds under HS conditions. These results strongly suggest that dietary propolis supplementation could be a successful attempt to maintain the performance and egg production of laying Japanese quail at convenient levels under heat stress conditions

    The importance of propolis in alleviating the negative physiological effects of heat stress in quail chicks

    No full text
    <div><p>Heat stress is one of the most detrimental confrontations in tropical and subtropical regions of the world, causing considerable economic losses in poultry production. Propolis, a resinous product of worker honeybees, possesses several biological activities that could be used to alleviate the deleterious effects of high environmental temperature on poultry production. The current study was aimed at evaluating the effects of propolis supplementation to Japanese quail (<i>Coturnix coturnix japonica</i>) diets on the production performance, intestinal histomorphology, relative physiological and immunological parameters, and selected gene expression under heat stress conditions. Three hundred one-day-old Japanese quail chicks were randomly distributed into 20 wired-cages. At 28 d of age, the birds were divided into 2 temperature treatment groups; a normal at 24°C (C group) and a heat stress at 35°C (HS group). The birds in each group were further assigned to 2 subgroups; one of them was fed on a basal diet without propolis supplementation (-Pr subgroup) while the other was supplemented with propolis (+Pr subgroup). Production performance including body weight gain, feed intake and feed conversion ratio were measured. The intestinal histomorphological measurements were also performed for all treatment groups. Relative physiological parameters including body temperature, corticosterone hormone level, malondialdehyde (MDA) and free triiodothyronine hormone (fT3), as well as the relative immunological parameters including the total white blood cells count (TWBC’s), heterophil/lymphocyte (H/L) ratio and lymphocyte proliferation index, were also measured. Furthermore, the mRNA expression for toll like receptor 5 (TLR5), cysteine-aspartic protease-6 (CASP6) and heat shock proteins 70 and 90 (Hsp70 and Hsp90) genes was quantified in this study. The quail production performance was significantly (P<0.05) impaired by HS treatment, while Pr treatment significantly improved the quail production performance. The villus width and area were significantly (P<0.05) lower in the HS compared to the C group, while Pr treatment significantly increased crypts depth of quail. A negative impact of HS treatment was observed on the physiological status of quail; however, propolis significantly alleviated this negative effect. Moreover, quail of the HS group expressed lower immunological parameters than C group, while propolis enhanced the immune status of the quail. The relative mRNA expression of TLR5 gene was down-regulated by HS treatment while it was up-regulated by the Pr treatment. Furthermore, the positive effects of propolis in HS-quail were evidenced by normalizing the high expressions of CASP6 and Hsp70 genes when compared to the C group. Based on these results, the addition of propolis to quail diets as a potential nutritional strategy in order to improve their performance, especially under heat stress conditions, is recommended.</p></div

    Least square means for the production performance traits as affected by heat stress and dietary propolis supplementation in Japanese quail.

    No full text
    <p>Least square means for the production performance traits as affected by heat stress and dietary propolis supplementation in Japanese quail.</p

    Least square means for the histomorphological measurements of small intestines as affected by heat stress and dietary propolis supplementation in Japanese quail.

    No full text
    <p>Least square means for the histomorphological measurements of small intestines as affected by heat stress and dietary propolis supplementation in Japanese quail.</p

    The hepatic relative expression of TLR5, CASP6, Hsp70 and Hsp90 genes as affected by heat stress and dietary propolis supplementation in Japanese quail.

    No full text
    <p>Bars express the means ± standard error of means (n = 10). C: control groups that were exposed to 24°C; HS: heat stress groups that were exposed to 35°C; -Pr: subgroups without dietary propolis supplementation; +Pr: subgroups with dietary propolis supplementation. <sup>a-b</sup> Means within the same gene with different superscripts are significantly different (P<0.05). The main effects of heat stress (HS), propolis (Pr) and their interaction (HSxPr) are provided for each gene in the table (S: significant; NS: non-significant).</p

    Visual examples for the histomorphological alteration in the intestinal villi of Japanese quail subjected to heat stress and supplemented with propolis in the basal diet (Scale bars 100 μm).

    No full text
    <p>C: control groups that were exposed to 24°C; HS: heat stress groups that were exposed to 35°C; -Pr: subgroups without dietary propolis supplementation; +Pr: subgroups with dietary propolis supplementation. The thick arrow indicates the damage and desquamation observed at the tips of the intestinal villi, while the thin arrow indicates the normal structure of intestinal villi.</p
    corecore