350 research outputs found
Exploring variations in childhood stunting in Nigeria using league table, control chart and spatial analysis
Background: Stunting, linear growth retardation is the best measure of child health inequalities as it captures multiple dimensions of children’s health, development and environment where they live. The developmental priorities and socially acceptable health norms and practices in various regions and states within Nigeria remains disaggregated and with this, comes the challenge of being able to ascertain which of the regions and states identifies with either high or low childhood stunting to further investigate the risk factors and make recommendations for action oriented policy decisions.
Methods: We used data from the birth histories included in the 2008 Nigeria Demographic and Health Survey (DHS) to estimate childhood stunting. Stunting was defined as height for age below minus two standard deviations from the median height for age of the standard World Health Organization reference population. We plotted control charts of the proportion of childhood stunting for the 37 states (including federal capital, Abuja) in Nigeria. The Local Indicators of Spatial Association (LISA) were used as a measure of the overall clustering and is assessed by a test of a null hypothesis.
Results: Childhood stunting is high in Nigeria with an average of about 39%. The percentage of children with stunting ranged from 11.5% in Anambra state to as high as 60% in Kebbi State. Ranking of states with respect to childhood stunting is as follows: Anambra and Lagos states had the least numbers with 11.5% and 16.8% respectively while Yobe, Zamfara, Katsina, Plateau and Kebbi had the highest (with more than 50% of their underfives having stunted growth).
Conclusions: Childhood stunting is high in Nigeria and varied significantly across the states. The northern states have a higher proportion than the southern states. There is an urgent need for studies to explore factors that may be responsible for these special cause variations in childhood stunting in Nigeria
Life expectancy inequalities in Wales before COVID-19: an exploration of current contributions by age and cause of death and changes between 2002 and 2018
Objectives
The COVID-19 pandemic in Wales and the UK has highlighted significant and historic inequalities in health between social groups. To better understand the composition of these inequalities and inform planning after the pandemic, we undertook a decomposition of life expectancy inequalities between the most and least deprived quintiles for men and women by age and cause of death and explored trends between 2002 and 2018.
Study design
Statistical decomposition of life expectancy inequalities by age and cause of death using routine population mortality datasets.
Methods
We used routine statistics from the Office for National Statistics for the period 2002–2018 on population and deaths in Wales stratified by age, gender, Welsh Index of Multiple Deprivation (WIMD) 2019 quintile and cause of death, categorised by International Classification of Disease, version 10, code into 15 categories of public health relevance. We aggregated data to 3-year rolling figures to account for low numbers of events in some groups annually. Next, we estimated life expectancy at birth by quintile, gender and period using life table methods. Lastly, we performed a decomposition analysis using the Arriaga method to identify the specific disease categories and ages at which excess deaths occur in more disadvantaged areas to highlight potential areas for action.
Results
Life expectancy inequalities between the most and least WIMD quintiles rose for both genders between 2002 and 2018: from 4.69 to 6.02 years for women (an increase of 1.33 years) and from 6.34 to 7.42 years for men (an increase of 1.08 years). Exploratory analysis of these trends suggested that the following were most influential for women: respiratory disease (1.50 years), cancers (1.36 years), circulatory disease (1.35 years) and digestive disease (0.51 years). For men, the gap was driven by circulatory disease (2.01 years), cancers (1.39 years), respiratory disease (1.25 years), digestive disease (0.79 years), drug- and alcohol-related conditions (0.54 years) and external causes (0.54 years). Contributions for women from respiratory disease, cancers, dementia and drug- and alcohol-related conditions appeared to be increasing, while among men, there were rising contributions from respiratory, digestive and circulatory disease.
Conclusions
Life expectancy inequalities in Wales remain wide and have been increasing, particularly among women, with indications of worsening trends since 2010 following the introduction of fiscal austerity. As agencies recover from the pandemic, these findings should be considered alongside any resumption of services in Wales or future health and public policy
Global, regional, and national sex-specific burden and control of the HIV epidemic, 1990–2019, for 204 countries and territories : the Global Burden of Diseases Study 2019
Background: The sustainable development goals (SDGs) aim to end HIV/AIDS as a public health threat by 2030. Understanding the current state of the HIV epidemic and its change over time is essential to this effort. This study assesses the current sex-specific HIV burden in 204 countries and territories and measures progress in the control of the epidemic. Methods: To estimate age-specific and sex-specific trends in 48 of 204 countries, we extended the Estimation and Projection Package Age-Sex Model to also implement the spectrum paediatric model. We used this model in cases where age and sex specific HIV-seroprevalence surveys and antenatal care-clinic sentinel surveillance data were available. For the remaining 156 of 204 locations, we developed a cohort-incidence bias adjustment to derive incidence as a function of cause-of-death data from vital registration systems. The incidence was input to a custom Spectrum model. To assess progress, we measured the percentage change in incident cases and deaths between 2010 and 2019 (threshold >75% decline), the ratio of incident cases to number of people living with HIV (incidence-to-prevalence ratio threshold <0·03), and the ratio of incident cases to deaths (incidence-to-mortality ratio threshold <1·0). Findings: In 2019, there were 36·8 million (95% uncertainty interval [UI] 35·1–38·9) people living with HIV worldwide. There were 0·84 males (95% UI 0·78–0·91) per female living with HIV in 2019, 0·99 male infections (0·91–1·10) for every female infection, and 1·02 male deaths (0·95–1·10) per female death. Global progress in incident cases and deaths between 2010 and 2019 was driven by sub-Saharan Africa (with a 28·52% decrease in incident cases, 95% UI 19·58–35·43, and a 39·66% decrease in deaths, 36·49–42·36). Elsewhere, the incidence remained stable or increased, whereas deaths generally decreased. In 2019, the global incidence-to-prevalence ratio was 0·05 (95% UI 0·05–0·06) and the global incidence-to-mortality ratio was 1·94 (1·76–2·12). No regions met suggested thresholds for progress. Interpretation: Sub-Saharan Africa had both the highest HIV burden and the greatest progress between 1990 and 2019. The number of incident cases and deaths in males and females approached parity in 2019, although there remained more females with HIV than males with HIV. Globally, the HIV epidemic is far from the UNAIDS benchmarks on progress metrics
Global burden of 87 risk factors in 204 countries and territories, 1990–2019 : a systematic analysis for the Global Burden of Disease Study 2019
Background Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease.
Methods GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk-outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk-outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk-outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden.
Findings The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10.8 million (95% uncertainty interval [UI] 9.51-12.1) deaths (19.2% [16.9-21.3] of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8.71 million (8.12-9.31) deaths (15.4% [14.6-16.2] of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253-350) DALYs (11.6% [10.3-13.1] of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0-9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10-24 years, alcohol use for those aged 25-49 years, and high systolic blood pressure for those aged 50-74 years and 75 years and older.
Interpretation Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public
Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019 : a systematic analysis for the Global Burden of Disease Study 2019
Background In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries.
Methods GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution.
Findings Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990-2010 time period, with the greatest annualised rate of decline occurring in the 0-9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10-24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10-24 years were also in the top ten in the 25-49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50-74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI.
Interpretation As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and development investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve
Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning
Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0.71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50.2% exceed this threshold for suitability in at least one 5×5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify
Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health : all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019
Background Sustainable Development Goal 3.2 has targeted elimination of preventable child mortality, reduction of neonatal death to less than 12 per 1000 livebirths, and reduction of death of children younger than 5 years to less than 25 per 1000 livebirths, for each country by 2030. To understand current rates, recent trends, and potential trajectories of child mortality for the next decade, we present the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 findings for all-cause mortality and cause-specific mortality in children younger than 5 years of age, with multiple scenarios for child mortality in 2030 that include the consideration of potential effects of COVID-19, and a novel framework for quantifying optimal child survival.
Methods We completed all-cause mortality and cause-specific mortality analyses from 204 countries and territories for detailed age groups separately, with aggregated mortality probabilities per 1000 livebirths computed for neonatal mortality rate (NMR) and under-5 mortality rate (USMR). Scenarios for 2030 represent different potential trajectories, notably including potential effects of the COVID-19 pandemic and the potential impact of improvements preferentially targeting neonatal survival. Optimal child survival metrics were developed by age, sex, and cause of death across all GBD location-years. The first metric is a global optimum and is based on the lowest observed mortality, and the second is a survival potential frontier that is based on stochastic frontier analysis of observed mortality and Healthcare Access and Quality Index.
Findings Global U5MR decreased from 71.2 deaths per 1000 livebirths (95% uncertainty interval WI] 68.3-74-0) in 2000 to 37.1 (33.2-41.7) in 2019 while global NMR correspondingly declined more slowly from 28.0 deaths per 1000 live births (26.8-29-5) in 2000 to 17.9 (16.3-19-8) in 2019. In 2019,136 (67%) of 204 countries had a USMR at or below the SDG 3.2 threshold and 133 (65%) had an NMR at or below the SDG 3.2 threshold, and the reference scenario suggests that by 2030,154 (75%) of all countries could meet the U5MR targets, and 139 (68%) could meet the NMR targets. Deaths of children younger than 5 years totalled 9.65 million (95% UI 9.05-10.30) in 2000 and 5.05 million (4.27-6.02) in 2019, with the neonatal fraction of these deaths increasing from 39% (3.76 million [95% UI 3.53-4.021) in 2000 to 48% (2.42 million; 2.06-2.86) in 2019. NMR and U5MR were generally higher in males than in females, although there was no statistically significant difference at the global level. Neonatal disorders remained the leading cause of death in children younger than 5 years in 2019, followed by lower respiratory infections, diarrhoeal diseases, congenital birth defects, and malaria. The global optimum analysis suggests NMR could be reduced to as low as 0.80 (95% UI 0.71-0.86) deaths per 1000 livebirths and U5MR to 1.44 (95% UI 1-27-1.58) deaths per 1000 livebirths, and in 2019, there were as many as 1.87 million (95% UI 1-35-2.58; 37% [95% UI 32-43]) of 5.05 million more deaths of children younger than 5 years than the survival potential frontier.
Interpretation Global child mortality declined by almost half between 2000 and 2019, but progress remains slower in neonates and 65 (32%) of 204 countries, mostly in sub-Saharan Africa and south Asia, are not on track to meet either SDG 3.2 target by 2030. Focused improvements in perinatal and newborn care, continued and expanded delivery of essential interventions such as vaccination and infection prevention, an enhanced focus on equity, continued focus on poverty reduction and education, and investment in strengthening health systems across the development spectrum have the potential to substantially improve USMR. Given the widespread effects of COVID-19, considerable effort will be required to maintain and accelerate progress
Risk factors and a predictive model for under-five mortality in Nigeria: evidence from Nigeria demographic and health survey
<p>Abstract</p> <p>Background</p> <p>Under-5 mortality is a major public health challenge in developing countries. It is essential to identify determinants of under-five mortality (U5M) childhood mortality because these will assist in formulating appropriate health programmes and policies in order to meet the United Nations MDG goal. The objective of this study was to develop a predictive model and identify maternal, child, family and other risk factors associated U5M in Nigeria.</p> <p>Methods</p> <p>Population-based cross-sectional study which explored 2008 demographic and health survey of Nigeria (NDHS) with multivariable logistic regression. Likelihood Ratio Test, Hosmer-Lemeshow Goodness-of-Fit and Variance Inflation Factor were used to check the fit of the model and the predictive power of the model was assessed with Receiver Operating Curve (ROC curve).</p> <p>Results</p> <p>This study yielded an excellent predictive model which revealed that the likelihood of U5M among the children of mothers that had their first marriage at age 20-24 years and ≥ 25 years declined by 20% and 30% respectively compared to children of those that married before the age of 15 years. Also, the following factors reduced odds of U5M: health seeking behaviour, breastfeeding children for > 18 months, use of contraception, small family size, having one wife, low birth order, normal birth weight, child spacing, living in urban areas, and good sanitation.</p> <p>Conclusions</p> <p>This study has revealed that maternal, child, family and other factors were important risk factors of U5M in Nigeria. This study has identified important risk factors that will assist in formulating policies that will improve child survival.</p
Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2·5 air pollution, 1990–2019: an analysis of data from the Global Burden of Disease Study 2019
Background: Experimental and epidemiological studies indicate an association between exposure to particulate matter (PM) air pollution and increased risk of type 2 diabetes. In view of the high and increasing prevalence of diabetes, we aimed to quantify the burden of type 2 diabetes attributable to PM2·5 originating from ambient and household air pollution. Methods: We systematically compiled all relevant cohort and case-control studies assessing the effect of exposure to household and ambient fine particulate matter (PM2·5) air pollution on type 2 diabetes incidence and mortality. We derived an exposure–response curve from the extracted relative risk estimates using the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. The estimated curve was linked to ambient and household PM2·5 exposures from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019, and estimates of the attributable burden (population attributable fractions and rates per 100 000 population of deaths and disability-adjusted life-years) for 204 countries from 1990 to 2019 were calculated. We also assessed the role of changes in exposure, population size, age, and type 2 diabetes incidence in the observed trend in PM2·5-attributable type 2 diabetes burden. All estimates are presented with 95% uncertainty intervals. Findings: In 2019, approximately a fifth of the global burden of type 2 diabetes was attributable to PM2·5 exposure, with an estimated 3·78 (95% uncertainty interval 2·68–4·83) deaths per 100 000 population and 167 (117–223) disability-adjusted life-years (DALYs) per 100 000 population. Approximately 13·4% (9·49–17·5) of deaths and 13·6% (9·73–17·9) of DALYs due to type 2 diabetes were contributed by ambient PM2·5, and 6·50% (4·22–9·53) of deaths and 5·92% (3·81–8·64) of DALYs by household air pollution. High burdens, in terms of numbers as well as rates, were estimated in Asia, sub-Saharan Africa, and South America. Since 1990, the attributable burden has increased by 50%, driven largely by population growth and ageing. Globally, the impact of reductions in household air pollution was largely offset by increased ambient PM2·5. Interpretation: Air pollution is a major risk factor for diabetes. We estimated that about a fifth of the global burden of type 2 diabetes is attributable PM2·5 pollution. Air pollution mitigation therefore might have an essential role in reducing the global disease burden resulting from type 2 diabetes. Funding: Bill & Melinda Gates Foundation
Mapping disparities in education across low- and middle-income countries
Educational attainment is an important social determinant of maternal, newborn, and child health1–3. As a tool for promoting gender equity, it has gained increasing traction in popular media, international aid strategies, and global agenda-setting4–6. The global health agenda is increasingly focused on evidence of precision public health, which illustrates the subnational distribution of disease and illness7,8; however, an agenda focused on future equity must integrate comparable evidence on the distribution of social determinants of health9–11. Here we expand on the available precision SDG evidence by estimating the subnational distribution of educational attainment, including the proportions of individuals who have completed key levels of schooling, across all low- and middle-income countries from 2000 to 2017. Previous analyses have focused on geographical disparities in average attainment across Africa or for specific countries, but—to our knowledge—no analysis has examined the subnational proportions of individuals who completed specific levels of education across all low- and middle-income countries12–14. By geolocating subnational data for more than 184Â million person-years across 528 data sources, we precisely identify inequalities across geography as well as within populations
- …