75 research outputs found

    Coding-Complete Genome Sequence of a Black Queen Cell Virus Isolate from Honey Bees (Apis mellifera) in Italy

    Get PDF
    In this study, we documented the complete coding genome sequence of a Black queen cell virus (BQCV) isolate from honey bees in Italy. This genome sequence illustrates a high similarity with other BQCV isolates reported worldwide and could provide insights into BQCV genome phylogeny and divergence

    New bioassays reveal susceptibility of stone-fruit rootstocks to capnodis tenebrionis larvae

    Get PDF
    Larvae of Capnodis tenebrionis (L.) (Coleoptera Buprestidae) feed and develop in roots of stone-fruit trees, thereby decreasing their efficiency, which can lead to plant death. The control of these larvae is critical, due to their localization in the root, and the management of this pest is focused on adults, mainly by using non-specific synthetic insecticides. Less susceptible Prunus rootstocks might be applied as a preventative management of larval infestation by this pest. The current research investigated the susceptibility to C. tenebrionis larvae of the most commonly used rootstocks by combining two bio-assays during two-year trials: development of larvae assayed on semi-artificial substrates containing rootstock bark flour; infestation by neonate larvae on rootstock twigs. The rearing assay on semi-artificial substrates made it possible to distinguish (1) a rootstock cluster (Montclar and GF677) in which larvae developed faster and heavier and produced larger adults, (2) a cluster (Adesoto, CAB6P, Colt and MaxMa60) in which larval growth was less efficient as well as adult size, and (3) a cluster (Garnem and Myrabolan 29C) with intermediate responses in larval development and adult size. The twig infestation assay by neonates showed the most infested (Colt) and least infested (Barrier, MaxMa60 and Marianna 26) rootstocks. When the results of both assays are combined, GF677 and Myrabolan 29C appear more susceptible, while Adesoto and MaxMa60 less susceptible to C. tenebrionis larvae, although Barrier and Marianna 26 require further investigation. The experimental model applied in the current trials can enable processing of a large number of tests on different rootstocks, thereby allowing the accumulation of a large quantity of data on the potential susceptibility of rootstocks. The possibility of rearing larvae on a substrate can allow comparison of additional compounds that could interact with larval growth

    The effect of entomopathogenic nematodes and fungi against four xylophagous pests

    Get PDF
    The effects of entomopathogenic nematodes EPN (Steinernematidae and Heterorhabditidae) and fungi EPF (Beauveria bassiana) strains were evaluated in laboratory assays against larvae of four xylophagous pests: the Asparagus moth Parahypopta caestrum, the European goat moth Cossus cossus, the pine longhorn Arhopalus syriacus and the black Buprestid Capnodis tenebrionis. Due to their biology and ethology, these insects may be included in the category of pests residing in cryptic habitats. The control of these species is considered difficult, due to the inability of chemical pesticides to penetrate the cryptic habitats and reach the targets. The pathogenicity of the entomopathogenic nematodes and fungi was tested in vitro against the pests. Two experimental models were considered and aimed to imitate the natural environment of the pests, in Petri dishes filled with plant material and inside wood galleries respectively. Main results showed that the majority of the tested strains of nematodes and fungi affected the insects’ survival rate. Steinernema feltiae and B. bassiana caused the highest percentage of larval mortality (80–100%). Considering the lack of effective chemical control means, the microbial control of the xylophagous pests by EPN and EPF reveals promising perspectives. Nematodes and fungi are able to penetrate the cryptic habitats because they are living organisms and may be horizontally transmitted by infected hosts. The distribution of EPF as preventive control method and the injection of EPN suspensions to reach and infect the larvae inside the wood galleries can be a combined sustainable control system

    Does study duration have opposite effects on recognition and repetition priming?

    Get PDF
    We investigated whether manipulating the duration for which an item is studied has opposite effects on recognition memory and repetition priming, as has been reported by Voss and Gonsalves (2010). Robust evidence of this would support the idea that distinct explicit and implicit memory systems drive recognition and priming, and would constitute evidence against a single-system model (Berry, Shanks, Speekenbrink, & Henson, 2012). Across seven experiments using study durations ranging from 40 ms to 2250 ms, and two different priming tasks (a classification task in Experiments 1a, 2a, 3a, and 4, and a continuous identification with recognition (CID-R) task in Experiments 1b, 2b, and 3b), we found that although a longer study duration improved subsequent recognition in each experiment, there was either no detectable effect on priming (Experiments 1a, 2a, and 4) or a similar effect to that on recognition, albeit smaller in magnitude (Experiments 1b, 2b, 3a, and 3b). Our findings (1) question whether study duration has opposite effects on recognition and priming, and (2) are robustly consistent with a single-system model of recognition and priming
    • …
    corecore