57 research outputs found

    Dissociative electron attachment to carbon dioxide via the 8.2 eV Feshbach resonance

    Get PDF
    Momentum imaging experiments on dissociative electron attachment (DEA) to CO{sub 2} are combined with the results of ab initio calculations to provide a detailed and consistent picture of the dissociation dynamics through the 8.2 eV resonance, which is the major channel for DEA in CO{sub 2}. The present study resolves several puzzling misconceptions about this system

    Observation of the dynamics leading to a conical intersection in dissociative electron attachment to water

    No full text
    Following prior work on the lower-energy resonances, we apply techniques of momentum imaging and ab initio scattering calculations to the process of dissociative electron attachment to water via the highest-energy {sup 2}B{sub 2} resonance. We focus on the H{sup -} anion fragment, which is produced via dynamics passing through and avoiding the conical intersection with the lower A{sub 1} state, leading to OH ({sup 2}{Pi}#5;) and OH ({sup 2}{Sigma}#6;), respectively. The momentum imaging technique, when combined with theoretical calculations on the attachment amplitude and dissociation dynamics, demonstrates that the angular distributions provide a signature of the location of the conical intersection in the space of nuclear configurations
    corecore