81 research outputs found

    Pregnancy, Microchimerism, and the Maternal Grandmother

    Get PDF
    A WOMAN OF REPRODUCTIVE AGE OFTEN HARBORS A SMALL NUMBER OF FOREIGN CELLS, REFERRED TO AS MICROCHIMERISM: a preexisting population of cells acquired during fetal life from her own mother, and newly acquired populations from her pregnancies. An intriguing question is whether the population of cells from her own mother can influence either maternal health during pregnancy and/or the next generation (grandchildren).Microchimerism from a woman's (i.e. proband's) own mother (mother-of-the-proband, MP) was studied in peripheral blood samples from women followed longitudinally during pregnancy who were confirmed to have uncomplicated obstetric outcomes. Women with preeclampsia were studied at the time of diagnosis and comparison made to women with healthy pregnancies matched for parity and gestational age. Participants and family members were HLA-genotyped for DRB1, DQA1, and DQB1 loci. An HLA polymorphism unique to the woman's mother was identified, and a panel of HLA-specific quantitative PCR assays was employed to identify and quantify microchimerism. Microchimerism from the MP was identified during normal, uncomplicated pregnancy, with a peak concentration in the third trimester. The likelihood of detection increased with advancing gestational age. For each advancing trimester, there was a 12.7-fold increase in the probability of detecting microchimerism relative to the prior trimester, 95% confidence intervals 3.2, 50.3, p<0.001. None of the women with preeclampsia, compared with 30% of matched healthy women, had microchimerism (p = 0.03).These results show that microchimerism from a woman's own mother is detectable in normal pregnancy and diminished in preeclampsia, supporting the previously unexplored hypothesis that MP microchimerism may be a marker reflecting healthy maternal adaptation to pregnancy

    Adverse maternal, fetal, and newborn outcomes among pregnant women with SARS-CoV-2 infection: an individual participant data meta-analysis.

    Get PDF
    INTRODUCTION Despite a growing body of research on the risks of SARS-CoV-2 infection during pregnancy, there is continued controversy given heterogeneity in the quality and design of published studies. METHODS We screened ongoing studies in our sequential, prospective meta-analysis. We pooled individual participant data to estimate the absolute and relative risk (RR) of adverse outcomes among pregnant women with SARS-CoV-2 infection, compared with confirmed negative pregnancies. We evaluated the risk of bias using a modified Newcastle-Ottawa Scale. RESULTS We screened 137 studies and included 12 studies in 12 countries involving 13 136 pregnant women.Pregnant women with SARS-CoV-2 infection-as compared with uninfected pregnant women-were at significantly increased risk of maternal mortality (10 studies; n=1490; RR 7.68, 95% CI 1.70 to 34.61); admission to intensive care unit (8 studies; n=6660; RR 3.81, 95% CI 2.03 to 7.17); receiving mechanical ventilation (7 studies; n=4887; RR 15.23, 95% CI 4.32 to 53.71); receiving any critical care (7 studies; n=4735; RR 5.48, 95% CI 2.57 to 11.72); and being diagnosed with pneumonia (6 studies; n=4573; RR 23.46, 95% CI 3.03 to 181.39) and thromboembolic disease (8 studies; n=5146; RR 5.50, 95% CI 1.12 to 27.12).Neonates born to women with SARS-CoV-2 infection were more likely to be admitted to a neonatal care unit after birth (7 studies; n=7637; RR 1.86, 95% CI 1.12 to 3.08); be born preterm (7 studies; n=6233; RR 1.71, 95% CI 1.28 to 2.29) or moderately preterm (7 studies; n=6071; RR 2.92, 95% CI 1.88 to 4.54); and to be born low birth weight (12 studies; n=11 930; RR 1.19, 95% CI 1.02 to 1.40). Infection was not linked to stillbirth. Studies were generally at low or moderate risk of bias. CONCLUSIONS This analysis indicates that SARS-CoV-2 infection at any time during pregnancy increases the risk of maternal death, severe maternal morbidities and neonatal morbidity, but not stillbirth or intrauterine growth restriction. As more data become available, we will update these findings per the published protocol

    Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain

    Get PDF
    Zika virus (ZIKV) is a flavivirus with teratogenic effects on fetal brain, but the spectrum of ZIKV-induced brain injury is unknown, particularly when ultrasound imaging is normal. In a pregnant pigtail macaque (Macaca nemestrina) model of ZIKV infection, we demonstrate that ZIKV-induced injury to fetal brain is substantial, even in the absence of microcephaly, and may be challenging to detect in a clinical setting. A common and subtle injury pattern was identified, including (i) periventricular T2-hyperintense foci and loss of fetal noncortical brain volume, (ii) injury to the ependymal epithelium with underlying gliosis and (iii) loss of late fetal neuronal progenitor cells in the subventricular zone (temporal cortex) and subgranular zone (dentate gyrus, hippocampus) with dysmorphic granule neuron patterning. Attenuation of fetal neurogenic output demonstrates potentially considerable teratogenic effects of congenital ZIKV infection even without microcephaly. Our findings suggest that all children exposed to ZIKV in utero should receive long-term monitoring for neurocognitive deficits, regardless of head size at birth
    • …
    corecore