1,227 research outputs found

    Production mechanisms and single-spin asymmetry for kaons in high energy hadron-hadron collisions

    Full text link
    Direct consequences on kaon production of the picture proposed in a recent Letter and subsequent publications are discussed. Further evidence supporting the proposed picture is obtained. Comparison with the data for the inclusive cross sections in unpolarized reactions is made. Quantitative results for the left-right asymmetry in single-spin processes are presented.Comment: 10 pages, 2 Postscript figure

    Fuzzy Rings in D6-Branes and Magnetic Field Background

    Full text link
    We use the Myers T-dual nonabelin Born-Infeld action to find some new nontrivial solutions for the branes in the background of D6-branes and Melvin magnetic tube field. In the D6-Branes background we can find both of the fuzzy sphere and fuzzy ring solutions, which are formed by the gravitational dielectric effect. We see that the fuzzy ring solution has less energy then that of the fuzzy sphere. Therefore the fuzzy sphere will decay to the fuzzy ring configuration. In the Melvin magnetic tube field background there does not exist fuzzy sphere while the fuzzy ring configuration may be formed by the magnetic dielectric effect. The new solution shows that D0D_0 propagating in the D6-branes and magnetic tube field background may expand into a rotating fuzzy ring. We also use the Dirac-Born-Infeld action to construct the ring configuration from the D-branes.Comment: Latex, 15 pages, detailed comments in section 2, typos correcte

    Phase resolution limit in macroscopic interference between Bose-Einstein condensates

    Full text link
    We study the competition between phase definition and quantum phase fluctuations in interference experiments between independently formed Bose condensates. While phase-sensitive detection of atoms makes the phase progressively better defined, interactions tend to randomize it faster as the uncertainty in the relative particle number grows. A steady state is reached when the two effects cancel each other. Then the phase resolution saturates to a value that grows with the ratio between the interaction strength and the atom detection rate, and the average phase and number begin to fluctuate classically. We discuss how our study applies to both recently performed and possible future experiments.Comment: 4 pages, 5 figure

    Trapped ions in the strong excitation regime: ion interferometry and non--classical states

    Get PDF
    The interaction of a trapped ion with a laser beam in the strong excitation regime is analyzed. In this regime, a variety of non--classical states of motion can be prepared either by using laser pulses of well defined area, or by an adiabatic passage scheme based on the variation of the laser frequency. We show how these states can be used to investigate fundamental properties of quantum mechanics. We also study possible applications of this system to build an ion interferometer.Comment: 9 pages, Revtex format, 5 compressed postscript figure

    Chaos and flights in the atom-photon interaction in cavity QED

    Full text link
    We study dynamics of the atom-photon interaction in cavity quantum electrodynamics (QED), considering a cold two-level atom in a single-mode high-finesse standing-wave cavity as a nonlinear Hamiltonian system with three coupled degrees of freedom: translational, internal atomic, and the field. The system proves to have different types of motion including L\'{e}vy flights and chaotic walkings of an atom in a cavity. It is shown that the translational motion, related to the atom recoils, is governed by an equation of a parametric nonlinear pendulum with a frequency modulated by the Rabi oscillations. This type of dynamics is chaotic with some width of the stochastic layer that is estimated analytically. The width is fairly small for realistic values of the control parameters, the normalized detuning ÎŽ\delta and atomic recoil frequency α\alpha. It is demonstrated how the atom-photon dynamics with a given value of α\alpha depends on the values of ÎŽ\delta and initial conditions. Two types of L\'{e}vy flights, one corresponding to the ballistic motion of the atom and another one corresponding to small oscillations in a potential well, are found. These flights influence statistical properties of the atom-photon interaction such as distribution of Poincar\'{e} recurrences and moments of the atom position xx. The simulation shows different regimes of motion, from slightly abnormal diffusion with ∌τ1.13\sim\tau^{1.13} at ÎŽ=1.2\delta =1.2 to a superdiffusion with ∌τ2.2 \sim \tau^{2.2} at ÎŽ=1.92\delta=1.92 that corresponds to a superballistic motion of the atom with an acceleration. The obtained results can be used to find new ways to manipulate atoms, to cool and trap them by adjusting the detuning ÎŽ\delta.Comment: 16 pages, 7 figures. To be published in Phys. Rev.

    Monte Carlo reconstruction of the inflationary potential

    Get PDF
    We present Monte Carlo reconstruction, a new method for ``inverting'' observational data to constrain the form of the scalar field potential responsible for inflation. This stochastic technique is based on the flow equation formalism and has distinct advantages over reconstruction methods based on a Taylor expansion of the potential. The primary ansatz required for Monte Carlo reconstruction is simply that inflation is driven by a single scalar field. We also require a very mild slow roll constraint, which can be made arbitrarily weak since Monte Carlo reconstruction is implemented at arbitrary order in the slow roll expansion. While our method cannot evade fundamental limits on the accuracy of reconstruction, it can be simply and consistently applied to poor data sets, and it takes advantage of the attractor properties of single-field inflation models to constrain the potential outside the small region directly probed by observations. We show examples of Monte Carlo reconstruction for data sets similar to that expected from the Planck satellite, and for a hypothetical measurement with a factor of five better parameter discrimination than Planck.Comment: 10 pages, 5 figures (RevTeX 4) Version submitted to PRD: references added, minor clarification

    Hydrostatic pressure-induced modifications of structural transitions lead to large enhancements of magnetocaloric effects in MnNiSi-based systems

    Get PDF
    A remarkable decrease of the structural transition temperature of MnNiSi from 1200 to transitions, leading to a large magnetocaloric effect near room temperature. Application of relatively low hydrostatic pressures (∌2.4 kbar) lead to an extraordinary enhancement of the isothermal entropy change from -ΔS=44 to 89 J/kgK at ambient and 2.4 kbar applied pressures, respectively, for a field change of ΔB=5T, and is associated with a large relative volume change of about 7% with P=2.4 kbar

    Inflationary perturbations from a potential with a step

    Get PDF
    We use a numerical code to compute the density perturbations generated during an inflationary epoch which includes a spontaneous symmetry breaking phase transition. A sharp step in the inflaton potential generates kk dependent oscillations in the spectrum of primordial density perturbations. The amplitude and extent in wavenumber of these oscillations depends on both the magnitude and gradient of the step in the inflaton potential. We show that observations of the cosmic microwave background anisotropy place strong constraints on the step parameters.Comment: 6 pages, Revtex - v2. reference adde

    A three dimensional investigation of two dimensional orbits

    Get PDF
    Orbits in the principal planes of triaxial potentials are known to be prone to unstable motion normal to those planes, so that three dimensional investigations of those orbits are needed even though they are two dimensional. We present here an investigation of such orbits in the well known logarithmic potential which shows that the third dimension must be taken into account when studying them and that the instability worsens for lower values of the forces normal to the plane. Partially chaotic orbits are present around resonances, but also in other regions. The action normal to the plane seems to be related to the isolating integral that distinguishes regular form partially chaotic orbits, but not to the integral that distinguishes partially from fully chaotic orbits.Comment: Accepted for publication in CMD
    • 

    corecore