60,405 research outputs found

    Automatic computation of wing-fuselage intersection lines and fillet inserts with fixed-area constraint

    Get PDF
    Procedures for automatic computation of wing-fuselage juncture geometry are described. These procedures begin with a geometry in wave-drag format. First, an intersection line is computed by extrapolating the wing to the fuselage. Then two types of filleting procedures are described, both of which utilize a combination of analytical and numerical techniques appropriate for automatic calculation. An analytical technique for estimating the added volume due to the fillet is derived, and an iterative procedure for revising the fuselage to compensate for this additional volume is given. Sample results are included in graphical form

    Fuselage design for a specified Mach-sliced area distribution

    Get PDF
    A procedure for designing a fuselage having a prescribed effective area distribution computed from -90 deg Mach slices is described. This type of calculation is an essential tool in designing a complete configuration with an effective area distribution that corresponds to a desired sonic boom signature shape. Sample calculations are given for M=2 and M=3 designs. The examples include fuselages constrained to have circular cross sections and fuselages having cross sections of arbitrary shape. It is found that, for a prescribed effective area distribution having sharp variations, the iterative procedure converges to a smoothed approximation to the prescribed distribution. For a smooth prescribed area distribution, the solution is not unique

    Semianalytic modeling of aerodynamic shapes

    Get PDF
    Equations for the semianalytic representation of a class of surfaces that vary smoothly in cross-sectional shape are presented. Some methods of fitting together and superimposing such surfaces are described. A brief discussion is also included of the application of the theory in various contexts such as computerized lofting of aerodynamic surfaces and grid generation

    Polydimethylsiloxane based microfluidic diode

    Get PDF
    In this paper, we present a novel elastomer-based microfluidic device for rectifying flow. The device is analogous to an electronic diode in function since it allows flow in one direction and stops flow in the opposing direction. The device is planar, in-line and can be replica molded via standard soft lithography techniques. The fabrication process is outlined in detail and follows a simple procedure that requires only photolithography and one replica molding step. Several geometries of devices are presented along with their flow versus pressure characteristics. A brief discussion of the device behavior is presented along with possible uses for the device

    Why the xE distribution triggered by a leading particle does not measure the fragmentation function but does measure the ratio of the transverse momenta of the away-side jet to the trigger-side jet

    Get PDF
    Hard-scattering of point-like constituents (or partons) in p-p collisions was discovered at the CERN-ISR in 1972 by measurements utilizing inclusive single or pairs of hadrons with large transverse momentum (pTp_T). It was generally assumed, following Feynman, Field and Fox, as shown by data from the CERN-ISR experiments, that the pTap_{T_a} distribution of away side hadrons from a single particle trigger [with pTtp_{T_t}], corrected for of fragmentation would be the same as that from a jet-trigger and follow the same fragmentation function as observed in e+e−e^+ e^- or DIS. PHENIX attempted to measure the fragmentation function from the away side xE∼pTa/pTtx_E\sim p_{T_a}/p_{T_t} distribution of charged particles triggered by a π0\pi^0 in p-p collisions at RHIC and showed by explicit calculation that the xEx_E distribution is actually quite insensitive to the fragmentation function. Illustrations of the original arguments and ISR results will be presented. Then the lack of sensitivity to the fragmentation function will be explained, and an analytic formula for the xEx_E distribution given, in terms of incomplete Gamma functions, for the case where the fragmentation function is exponential. The away-side distribution in this formulation has the nice property that it both exhibits xEx_E scaling and is directly sensitive to the ratio of the away jet p^Ta\hat{p}_{T_a} to that of the trigger jet, p^Tt\hat{p}_{T_t}, and thus can be used, for example, to measure the relative energy loss of the two jets from a hard-scattering which escape from the medium in A+A collisions. Comparisons of the analytical formula to RHIC measurements will be presented, including data from STAR and PHENIX, leading to some interesting conclusions.Comment: 6 pages, 5 figures, Proceedings of Poster Session, 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2006), November 14-20, 2006, Shanghai, P. R. Chin

    A system design for human factors studies of speech-enabled Web browsing

    Get PDF
    This paper describes the design of a system which will subsequently be used as the basis of a range of empirical studies aimed at discovering how best to harness speech recognition capabilities in multimodal multimedia computing. Initial work focuses on speech-enabled browsing of the World Wide Web, which was never designed for such use. System design is complete, and is being evaluated via usability testing

    Fermi-liquid effects in the gapless state of marginally thin superconducting films

    Full text link
    We present low temperature tunneling density-of-states measurements in Al films in high parallel magnetic fields. The thickness range of the films, t=6-9 nm, was chosen so that the orbital and Zeeman contributions to their parallel critical fields were comparable. In this quasi-spin paramagnetically limited configuration, the field produces a significant suppression of the gap, and at high fields the gapless state is reached. By comparing measured and calculated tunneling spectra we are able to extract the value of the antisymmetric Fermi-liquid parameter G^0 and thereby deduce the quasiparticle density dependence of the effective parameter G^0_{eff} across the gapless state.Comment: 6 pages, 4 figure

    Hill's Equation with Random Forcing Parameters: Determination of Growth Rates through Random Matrices

    Full text link
    This paper derives expressions for the growth rates for the random 2 x 2 matrices that result from solutions to the random Hill's equation. The parameters that appear in Hill's equation include the forcing strength and oscillation frequency. The development of the solutions to this periodic differential equation can be described by a discrete map, where the matrix elements are given by the principal solutions for each cycle. Variations in the forcing strength and oscillation frequency lead to matrix elements that vary from cycle to cycle. This paper presents an analysis of the growth rates including cases where all of the cycles are highly unstable, where some cycles are near the stability border, and where the map would be stable in the absence of fluctuations. For all of these regimes, we provide expressions for the growth rates of the matrices that describe the solutions.Comment: 22 pages, 3 figure
    • …
    corecore