1,518 research outputs found
Mpox Virus in Pregnancy, the Placenta, and Newborn.
Before its eradication, the smallpox virus was a significant cause of poor obstetric outcomes, including maternal and fetal morbidity and mortality. The mpox (monkeypox) virus is now the most pathogenic member of the Orthopoxvirus genus infecting humans. The 2022 global mpox outbreak has focused attention on its potential effects during pregnancy.
To understand the comparative effects of different poxvirus infections on pregnancy, including mpox virus, variola virus, vaccinia virus, and cowpox virus. The impact on the pregnant individual, fetus, and placenta will be examined, with particular attention to the occurrence of intrauterine vertical transmission and congenital infection.
The data are obtained from the authors' cases and from various published sources, including early historical information and contemporary publications.
Smallpox caused maternal and perinatal death, with numerous cases reported of intrauterine transmission. In endemic African countries, mpox has also affected pregnant individuals, with up to a 75% perinatal case fatality rate. Since the start of the 2022 mpox outbreak, increasing numbers of pregnant women have been infected with the virus. A detailed description is given of the congenital mpox syndrome in a stillborn fetus, resulting from maternal-fetal transmission and placental infection, and the potential mechanisms of intrauterine infection are discussed. Other poxviruses, notably vaccinia virus and, in 1 case, cowpox virus, can also cause perinatal infection. Based on the historical evidence of poxvirus infections, mpox remains a threat to the pregnant population, and it can be expected that additional cases will occur in the future
Recent results on GaAs detectors - 137
The present understanding of the charge collection in GaAs detectors with
respect to the materials used and its processing are discussed. The radiation
induced degradation of the charge collection efficiency and the leakage current
of the detectors are summarised. The status of strip and pixel detectors for
the ATLAS experiment are reported along with the latest results from GaAs X-ray
detectors for non-high energy physics applications.Comment: 7 pages. 4 postscript figures + 1 postscript preprint logo + 1 LaTeX
file + 1 style file. Also available at
http://ppewww.ph.gla.ac.uk/preprints/97/05
Cooling atoms in an optical trap by selective parametric excitation
We demonstrate the possibility of energy-selective removal of cold atoms from
a tight optical trap by means of parametric excitation of the trap vibrational
modes. Taking advantage of the anharmonicity of the trap potential, we
selectively remove the most energetic trapped atoms or excite those at the
bottom of the trap by tuning the parametric modulation frequency. This process,
which had been previously identified as a possible source of heating, also
appears to be a robust way for forcing evaporative cooling in anharmonic traps.Comment: 5 pages, 5 figure
Application of direct bioautography and SPME-GC-MS for the study of antibacterial chamomile ingredients
The isolation and characterization of antibacterial chamomile components were performed by the use of direct bioautography and solid phase microextraction (SPME)-GC-MS. Four ingredients, active against Vibrio fischeri, were identified as the polyacetylene geometric isomers cis- and trans-spiroethers, the coumarin related herniarin, and the sesquiterpene alcohol (-)-alpha-bisabolol
Cytoplasmic chromatin triggers inflammation in senescence and cancer
Chromatin is traditionally viewed as a nuclear entity that regulates gene expression and silencing. However, we recently discovered the presence of cytoplasmic chromatin fragments that pinch off from intact nuclei of primary cells during senescence, a form of terminal cell-cycle arrest associated with pro-inflammatory responses. The functional significance of chromatin in the cytoplasm is unclear. Here we show that cytoplasmic chromatin activates the innate immunity cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway, leading both to short-term inflammation to restrain activated oncogenes and to chronic inflammation that associates with tissue destruction and cancer. The cytoplasmic chromatin-cGAS-STING pathway promotes the senescence-associated secretory phenotype in primary human cells and in mice. Mice deficient in STING show impaired immuno-surveillance of oncogenic RAS and reduced tissue inflammation upon ionizing radiation. Furthermore, this pathway is activated in cancer cells, and correlates with pro-inflammatory gene expression in human cancers. Overall, our findings indicate that genomic DNA serves as a reservoir to initiate a pro-inflammatory pathway in the cytoplasm in senescence and cancer. Targeting the cytoplasmic chromatin-mediated pathway may hold promise in treating inflammation-related disorders
Measurement of atmospheric elemental carbon: Real-time data for Los Angeles during summer 1987
Two fundamentally different techniques for measuring atmospheric elemental carbon (EC) aerosol were compared to validate the methods. One technique, photoacoustic spectroscopy, was used to measure the optical absorption ([lambda] = 514.5 nm) of in situ atmospheric aerosol in real time. This optical absorption can be converted to EC concentration using the appropriate value of the absorption cross-section for C, so that a comparison could be made with the second technique, thermal-optical analysis of filter-collected samples, which measures the collected EC by combustion. Solvent extraction of the filter samples prior to the thermal analysis procedure was required to minimize errors due to pyrolysis of organic carbon. Excellent 1:1 correlation of atmospheric EC concentrations resulted for measurements by the photoacoustic method vs the thermal method over coincident sampling times. The linear regression gave y = 1.006 (+/-0.056) x+0.27 (+/-0.56) with R = 0.945 (n = 41), where y is the photoacoustic EC concentration and x is the thermal elemental carbon concentration, both in [mu]g m-3. This data set was collected in Los Angeles as part of the Southern California Air Quality Study (SCAQS) during the summer 1987, and supplements the results of an earlier, more limited data set taken in Dearborn, MI. The diurnal variability of EC aerosol in Los Angeles during SCAQS, as determined by photoacoustic spectroscopy, is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28903/1/0000740.pd
Real-time, in situ measurements of atmospheric optical absorption in the visible via photoacoustic spectroscopy--IV. Visibility degradation and aerosol optical properties in Los Angeles
Aerosol light absorption (babs) has been measured in real-time in Los Angeles with a validated photoacoustic technique, and its impact on visibility degradation has been examined. These measurements were collected during ten days in the summer of 1987 for the Southern California Air Quality Study (SCAQS). Aerosol babs ([lambda] = 514.5 nm) varied from an hourly average value of 7 x 10-6 m-1 in the 3-4 and 4-5 a.m. periods of 13 July to 9 x 10-5 m-1 in the 7-8 a.m. period of both 28 August and 3 September. This babs, which is due solely to elemental carbon (EC) showed a distinct diurnal pattern with low values at night, increasing around sunrise to higher values through mid-afternoon. Comparison of these data with aerosol light scattering data clearly illustrates that the contribution of aerosol light absorption to visibility degradation increases in importance under less polluted conditions. Other urban and rural studies show similar results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28906/1/0000743.pd
Moments of Nucleon Light Cone Quark Distributions Calculated in Full Lattice QCD
Moments of the quark density, helicity, and transversity distributions are
calculated in unquenched lattice QCD. Calculations of proton matrix elements of
operators corresponding to these moments through the operator product expansion
have been performed on lattices for Wilson fermions at using configurations from the SESAM collaboration and at
using configurations from SCRI. One-loop perturbative renormalization
corrections are included. At quark masses accessible in present calculations,
there is no statistically significant difference between quenched and full QCD
results, indicating that the contributions of quark-antiquark excitations from
the Dirac Sea are small. Close agreement between calculations with cooled
configurations containing essentially only instantons and the full gluon
configurations indicates that quark zero modes associated with instantons play
a dominant role. Naive linear extrapolation of the full QCD calculation to the
physical pion mass yields results inconsistent with experiment. Extrapolation
to the chiral limit including the physics of the pion cloud can resolve this
discrepancy and the requirements for a definitive chiral extrapolation are
described.Comment: 53 Pages Revtex, 26 Figures, 9 Tables. Added additional reference and
updated referenced data in Table I
- …