58,488 research outputs found

    Molecular self-organisation in a developmental model for the evolution of large-scale artificial neural networks

    Get PDF
    We argue that molecular self-organisation during embryonic development allows evolution to perform highly nonlinear combinatorial optimisation. A structured approach to architectural optimisation of large-scale Artificial Neural Networks using this principle is presented. We also present simulation results demonstrating the evolution of an edge detecting retina using the proposed methodology

    Remote Stratigraphic Analysis: Combined TM and AIS Results in the Wind River/bighorn Basin Area, Wyoming

    Get PDF
    An in-progress study demonstrates the utility of airborne imaging spectrometer (AIS) data for unraveling the stratigraphic evolution of a North American, western interior foreland basin. AIS data are used to determine the stratigraphic distribution of mineralogical facies that are diagnostic of specific depositional environments. After wavelength and amplitude calibration using natural ground targets with known spectral characteristics, AIS data identify calcite, dolomite, gypsum and montmorillonite-bearing strata in the Permian-Cretaceous sequence. Combined AIS and TM results illustrate the feasibility of spectral stratigraphy, remote analysis of stratigraphic sequences

    Determining trophic niche width: a novel approach using stable isotope analysis

    Get PDF
    1. Although conceptually robust, it has proven difficult to find practical measures of niche width that are simple to obtain, yet provide an adequate descriptor of the ecological position of the population examined. 2. Trophic niche has proven more tractable than other niche dimensions. However, indices used as a proxy for trophic niche width often suffer from the following difficulties. Such indices rarely lie along a single scale making comparisons between populations or species difficult; have difficulty in combining dietary prey diversity and evenness in an ecologically meaningful way; and fail to integrate diet over ecological time-scales thus usually only comprise single snapshots of niche width. 3. We propose an alternative novel method for the comparison of trophic niche width: the use of variance of tissue stable isotope ratios, especially those of nitrogen and carbon. 4. This approach is a potentially powerful method of measuring trophic niche width, particularly if combined with conventional approaches, because: it provides a single measure on a continuous axis that is common to all species; it integrates information on only assimilated prey over time; the integration period changes with choice of tissue sampled; and data production is theoretically fast and testing among populations simple. 5. Empirical studies are now required to test the benefits of using isotopic variance as a measure of niche width, and in doing so help refine this approach

    Design of a candidate flutter suppression control law for DAST ARW-2

    Get PDF
    A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQC (Linear Quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness

    Control law design to meet constraints using SYNPAC-synthesis package for active controls

    Get PDF
    Major features of SYNPAC (Synthesis Package for Active Controls) are described. SYNPAC employs constrained optimization techniques which allow explicit inclusion of design criteria (constraints) in the control law design process. Interrelationships are indicated between this constrained optimization approach, classical and linear quadratic Gaussian design techniques. Results are presented that were obtained by applying SYNPAC to the design of a combined stability augmentation/gust load alleviation control law for the DAST ARW-2

    Fitting aerodynamic forces in the Laplace domain: An application of a nonlinear nongradient technique to multilevel constrained optimization

    Get PDF
    A technique which employs both linear and nonlinear methods in a multilevel optimization structure to best approximate generalized unsteady aerodynamic forces for arbitrary motion is described. Optimum selection of free parameters is made in a rational function approximation of the aerodynamic forces in the Laplace domain such that a best fit is obtained, in a least squares sense, to tabular data for purely oscillatory motion. The multilevel structure and the corresponding formulation of the objective models are presented which separate the reduction of the fit error into linear and nonlinear problems, thus enabling the use of linear methods where practical. Certain equality and inequality constraints that may be imposed are identified; a brief description of the nongradient, nonlinear optimizer which is used is given; and results which illustrate application of the method are presented

    Application of optimization techniques to the design of a flutter suppression control law for the DAST ARW-2

    Get PDF
    The design of a candidate flutter suppression (FS) control law for the symmetric degrees of freedom for the DAST ARW-2 aircraft is discussed. The results illustrate the application of several currently employed control law design techniques. Subsequent designs, obtained as the mathematical model of the ARW-2 is updated, are expected to employ similar methods and to provide a control law whose performance will be flight tested. This study represents one of the steps necessary to provide an assessment of the validity of applying current control law synthesis and analysis techniques in the design of actively controlled aircraft. Mathematical models employed in the control law design and evaluation phases are described. The control problem is specified by presenting the flutter boundary predicted for the uncontrolled aircraft and by defining objectives and constraints that the controller should satisfy. A full-order controller is obtained by using Linear Quadratic Gaussian (LQG) techniques. The process of obtaining an implementable reduced-order controller is described. One example is also shown in which constrained optimization techniques are utilized to explicitly include robustness criteria within the design algorithm

    Tools for active control system design

    Get PDF
    Efficient control law analysis and design tools which properly account for the interaction of flexible structures, unsteady aerodynamics and active controls are developed. Development, application, validation and documentation of efficient multidisciplinary computer programs for analysis and design of active control laws are also discussed
    corecore