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FITTING AERODYNAMIC FORCES IN 'l1IE LAPLACE DOMAIN:
An Application of a Nonlinear NongradientTeehnique To

IIo1tilevel Constrained Optia1.ation

Sherwood H. Tiffany and William M. Adams, Jr.

SUMMARY

A technique which employs both linear and nonlinear methods in a multilevel
optimization structure to best approximate generalized unsteady aerodynamic forces
for arbitrary motion is described. Optimum selection of free parameters is made in a
rational function approximation of the aerodynamic forces in the Laplace domain such
that a best fit is obtained, in a least squares sense, to tabular data for purely
oscillatory motion. The multilevel structure and the corresponding formulation of
the objective models are presented which separate the reduction of the fit error into
linear and nonlinear problems, thus enabling the use of linear methods where practi
cal. Certain equality and inequality constraints that may be imposed are identified;
a brief description of the nongradient, nonlinear optimizer which is used is given;
and results which illustrate application of the method are presented.

lNTROoocrIOll

This paper describes a method of determining a constrained approximation to the
generalized aerodynamic forces for arbitrary motion. Nonlinear rational functions,
as described in references 1-5, are used to fit tabular aerodynamic force data for
purely oscillatory motion in a least squares sense with certain specified constraints
enforced. An error function which represents the weighted deviations between the
approximating functions and the tabulated data at specified values of frequencies is
minimized by separating the error function into two objective functions. Linear and
nonlinear techniques are then employed independently in the optimization process.
The objective function for the linear portion of the problem includes the equality
constraints which can be imposed on the approximating functions (Refs. 3,4). This
"linear" portion of the problem can be solved algebraically, using matrix techniques.
The "nonlinear" objective function is reduced by employing a simple sequential sim
plex (or polytope) algorithm (Refs. 6-8) for nonlinear unconstrained minimization.
This particular optimizer is employed because it is a nongradient, numerically stable
algorithm which has been found to converge rapidly in numerical applications. Side
constraints are imposed on the design variables to ensure system stability.

Once the approximating functions are determined, the rational formulation allows
transformation of the equations of motion into linear time invarient (LTI) form.
Optimum selection of the design variables offers the potential for a good fit to the
tabulated aerodynamic data with fewer design variables which translates into a
smaller LTI set of system equations. This possibility is highly desirable and
provided the impetus for the research described herein.

The method of separating the problem objectives in such a way that the optimiza
tion can be performed using linear and nonlinear methods independently was employed
in reference 9. Furthermore, the form of the approximating functions can be shown to



be equivalent to the matrix-Pade approximation as implemented therein. Basic differ
ences do exist, however, in that various equality constraints on the aerodynamic fits
are included here, and a nongradient algorithm is employed to perform the nonlinear
optimization.

SYMBOLS ..

A Matrix multiplier of states used in the LTI representation of the equa
tions of motion, X=AX + BU.

Coefficients used in rational function approximation (RFA) for an element
of matrix Q. See equation (7).

".

Column vector of coefficients, (AO' AI'

matrix &. See equations (8) and (11).

T... ) , for the (i,j) element of

B

(DJ

Constant term in the R.th denominator of a rational function approximation,
Q, for an element of matrix Q. This term in the RFA is commonly referred
to as a "lag" term. See equation (7).

Vector of denominator constants used in the lag terms of the RFA's for the
jth column of Q. See equation (15).

Matrix ~ultiplier of inputs in the LTI representation of equations of
motion, X = AX + BU.

Lower and upper bounds on R.th lag coefficient for the jth column of &.
See equation (16).

Matrix multiplier of unknown coefficients used in defining linear equality
constraints for the jth column of Q. See equations (11) and (12).

Matrix of constants used in defining linear equality constraints for the
jth column of Q. See equations (11) and (12).

Matrix of damping coefficients used in Lagrangian Formulation of the equa
tions of motion. See equations (2) and (3).

The total error in the approximations over the jth column of the matrix Q.
Specifically, it is the weighted sum of square errors in the approxima
tions to the elements in the jth column of the Q matrix as a function of
the lag coefficients currently being used for that column. See equa
tion (15).

Vector of forcing functions in the time domain. See equation (2).{f( t)}

{F(s)} Vector of forcing functions in the Laplace domain.
and (4).

See equations (3)

•

i Index over which a summation is performed, see equation (1), or the
complex variable N. As a subscript or superscript, it refers to the
ith row of a matrix.
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j

[K]

[M]

As a subscript or superscript it is used to refer to the jth column of a
matrix.

Generalized stiffness matrix used in the Lagrangian formulation of the
equations of motion. See equations (2) and (3).

As a subscript, it refers to one of the "lag" terms in the rational func
tion approximations (see Eq. (7». As a subscript in a partial derivative
of equations (7), (lO)and (13), it refers to one of the A-coefficients or
A-coefficients •

Generalized mass matrix used in the Lagrangian formulation of the equa
tions of motion. See equations (2) and (3).

Number of lag terms used in a specific approximation. See equation (8).

Number of modes retained in the EOM to define the motion of the vehicle.

Lifting pressure at a specified point on the upper surface of the aircraft
equal to the difference in pressures between the upper and lower surface.
See equation (5).

The change in the lifting pressure due to changes in the j th generalized
coordinate. See equation (5).

Generalized coordinate representing the amplitude of the corresponding ith
component mode shape in the total deflection as a function of time. See
equation (1).

The vector of generalized coordinates and its first two time derivatives
used in the Lagrangian formulation of the equations of mot~on. See equa
tion (2).

Vector of generalized coordinates in the Laplace domain.
tions (3) and (4).

An element of Q (s) as in equation (9).

Matrix of generalized force coefficients. See equation (4).

The rational function approximation to an element of Q (8).
tions (7) and (14).

The matrix of rational function approximations of Q (8).

Laplace complex variable.

Total lifting surface of the aircraft. See equation (5).

Time variable.

3

See equa-

See equa-



x

•X, X

y

The weight applied to the ith row fit error in the jth column error, Ej.
See equation (15).

The x-coordinate in an (x,y,z) spacial coordinate system.

The vector of states and its derivative, respectively, in the LTl formula
tion of the equations of motion.

The y-coordinate in an (x,y,z) spacial coordinate system.

z,z(x,y,t) The z-coordinate in an (x,y,z) spacial coordinate system representing the
deflection at a point (x,y) at a given time, t.

zi ,zi(x ,y) The time independent mode shape component of the deflection z. See equa
tion (1).

The design variable in the entire real space corresponding to btj in the
sinusoidal transformation given by equation (17).

e:

w

The unconstrained least square error in the fit of an element of Q as
given by equation (9).

The objective function in the Lagrangian formulation of the error in the
constrained fit of the (i,j) element of Q as defined by equation (12).

A Lagrangian multiplier used to include an equality constraint in the
optimization of an objective function.

The vector of Lagrangian multipliers in the Lagrangian formulation of the
constrained objective function for the (i,j) element of Q as given by
equation (12).

Frequency of oscillation.

A specified value of frequency at which tabular values for the generalized
aerodynamic forces are determined.

The transpose of a matrix [ ].

PROBLEM DEFINITION

BquaU.on8 of Motion

Some motions of a flexible aircraft are a result of the induced downwash of the
airflow over a surface due to motion of the airfoils themselves. These unsteady
aerodynamic effects as well as the structural dynamics must be considered when model
ing an actively controlled flexible aircraft. Using a Lagrangian approach and con
sidering only small perturbations from a level equilibrium flight condition, the
perturbed aircraft is represented by a linearized system of equations expressed in
terms of generalized coordinates (Ref. 10). As depicted in figure 1, the structural
displacement, z(x,y,t) can be represented by the sum of products of a finite set of

4

•



both shape functions (mode shapes) and time functions through the method of
separation of variables:

Displacements: z(x,y,t) ... L [zi(x,y,O) qi(t)]
i

(1)

•
The equations of motion (EOM) can be represented in the time domain as

EOM (time domain): [M]{~} + [D]{~} + [K]{q} = (f(t)} (2)

where the generalized mass and stiffness matrices are integral functions of the mode
shapes. The entire system of equations may then be transformed into the Laplace
domain where algebraic methods can be more readily employed to examine system
stability.

EOM (Laplace domain): (3)

The forces on the right-hand side of equations (2) and (3) are a result of the
aerodynamic forces due to aircraft motion, turbulence and control surface motions.
In the Laplace domain, the unsteady aerodynamic forces can be expressed in the form

(F(s)} ... ( 4)

where the matrix Q is called the matrix of aerodynamic force coefficients. It is
this matrix of coefficients which is of interest here.

Cenera1ized Aerodynaa1c Forces

Figure 2 depicts the fact that these aerodynamic force coefficients may be
obtained as a surface integral function of mode shapes and the changes in lifting
pressure due to downwash in each of the modes:

•

(5)

..
s Laplace variable

S Total surface

The programs currently available for production generation of aerodynamic forces
can only compute these forces for purely oscillatory motion
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s = iw

for specified values of frequency. Hence, each element of Q (s) is defined only for
a finite set of values. An unsteady aerodynamic lifting surface theory commonly
referred to as the Doublet Lattice method, described in references 11 and 12, was
used to obtain the tabular values for the generalized aerodynamic force coefficients
herein.

The fact that the generalized aerodynamic force coefficients can only be ,
obtained for purely oscillatory motion is one of the major problems in solving the
equations of motion for stability characteristics, etc. (Ref. 13). Since the aerody-
namic forces are transcendental functions of wand are available only in tabular form
for a finite set of frequencies, iterative solution methods (which tend to be costly)
must be used to ~etermine· system stability. Furthermore, the solutions are only
exact for purely oscillatory motion, iw.

Aerodyaaaic Force Coefficients for Arbitrary Motion

In order to obtain solutions in t~e Laplace domain for both growing and decaying
motion (s off the iw axis), it is necessary to express the forces as a function of
s. The concept of analytic continuation is often used to circumvent the difficulty
of having the generalized aerodynamic force coefficients only as tabular values of
s = iw. Furthermore, it is desirable that the functional relationship be rational to
enable writing the EOM in linear time-invariant (LTI) state space form:

•X=AX+BU (6)

Hence, efficient linear system techniques can be employed to solve for system
stability, etc. (Refs. 2-5).

Rational Function Approxi..tions

The form of the approximation is generally written as

2
Q( s) = Ao + Al s + Az S

s
(7)

for each element of Q (s). The problem then becomes one of fitting the available
tabular data as well as possible at each specified value of frequency, wk. The
fact that the fit is not specified at all values of frequency means that the rational
function is only an approximate analytic continuation. Accurateness of the fit
depends not only on the number of frequencies for which tabular data are available,
but also upon the number, nR" of "lag" coefficients used in the approximation.
However, as figure 3 depicts, even when the same set of bR, is used for a given
column of Q, the number of aerodynamic states introduced into the LTI formulation of
the EOM is equal to the number of modes retained to define the motion times the total

6
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number of "lag" terms employed in the approximations. Therefore, in order to keep
the order of the matrix equations down to a reasonable size, computationally, it is
desirable to reduce the number of bR, employed in the fits to be as few as possible
without adversely affecting the overall system analyses. For this reason, the number
of these lag coefficients used in the approximations is a critical factor in the
analyses for which these approximations are being determined. The primary reason for
the multilevel, nonlinear optimization structure being demonstrated is to keep nR.
as small as possible •

IIJLTILEVEL OPTIMIZATION STRUCTURE

UncORstrained L1near Optt.izatiOR

The rational approximation is linear with respect to the coefficients, Ao,
AI, etc. If the coefficients,

(8)

are used as design variables for a particular element of Q (s), and if a square error
function

(9)

satisfies the minimum condition that all partials with respect to each design vari
able be 0

dE:
aAR, ... 0 , (0)

•

the resulting system of equations is linear, and the algebraic solution for the
coefficients giving the least square error is possible. Henceforth, this is referred
to as a "linear" optimization even though the objective function is quadratic since
linear, algebraic methods may be employed to determine the optimum solution•
Figure 4 shows the least square error fit to a single element in the Q matrix which
resulted when two "lag" terms were employed:

s

7
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The circles are the actual tabular values, and the solid dots are the corresponding
values of the approximation at the same values of frequency. It should be noted that
the fit at zero frequency, which represents the steady state conditions, is extremely
poor. Since steady state characteristics of the system are often known, it might be
desirable to be able to impose certain equality constraints on the system, such as
equality between the approximations and the tabular data for w - 0 (Refs. 3,4).

Linear Equality Constraints

There are actually several types of equality constraints which might be
desirable to impose on the rational approximations. In addition to forcing agreement
at w = 0 , one may wish either to impose some constraint on the slope at w = 0 or to
null out a specific coefficient, such as A2, in order to eliminate acceleration
terms for a specific element in the force mat rix. Furthermore, since flutter (the
point at which "the vehicle becomes unstable) is a critical element in aircraft flight
analysis, it might also be desirable to force agreement near a known flutter
frequency.

The linear equality constraints which have been implemented (refer to appendix A
in Ref. 5) are to:

a) Constrain approximating functions at low frequency (w - 0) to be the actual
tabular values Q ij(O).

b) Constrain slopes of approximating functions at w = 0 to be specified values.

c) Null out specific coefficients in the approximations.

d) Force agreement of approximating functions with interpolated values at some
specified frequency, such as the flutter frequency.

Each constraint is imposed on an entire column of Q (s), and can be expressed in
terms of linear equations involving the design variables, Aij' as

(11 )

Again, refer to reference 5, Appendix A, for details.

Constrained Linear Optiaization

The Lagrange multiplier formulation for including equality constraints is
employed to redefine the fit error for a given (i,j) element of the aerodynamic force
coefficient matrix,

•

•

(12)
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The corresponding gradient conditions

= 0 and = 0 (13)

define a linear system of equations whose algebraic solution is a least square error
approximation which exactly satisfies the imposed constraints.

Figure 5 shows a constrained approximation to the same element of Q as shown in
figure 4 for which the function and its slope are specified at 0 frequency. As the
figure indicates, the imposed constraints at zero frequency have been satisfied, but
the fit at higher frequencies has deteriorated drastically. However, there are addi
tional free parameters in the rational function approximation, namely the ht, which
can be optimized to improve the fits. Up to this point in the approximations, these
have been specified a priori over the range of desired frequencies based upon engi
neering judgement. Historically, these parameters, or their equivalent in the
matrix-Pade approximants, have not been included as design variables since the
resulting gradient equations, unlike equations (13), would not be linear. The tech
nique employed herein to optimize these is a nongradient-based method. Reference 9
defines a method of optimizing the equivalent parameters in the matrix-Pade approxi
mants using gradient methods.

Linear versus Nonlinear

Figure 6 depicts the separation of the design variables for the "linear" and
"nonlinear" optimization. The overall optimization problem can then be defined by
considering as design variables

(14)

,

for a given column and all the linear coefficients, Aij, for each element of the
same column. The optimization can then be performed as a sequence of linear problems
over the specified column for a fixed set, bj, of btj' s which are sequentially
selected by a nonlinear optimizer.

Objeetive Punetions

The actual optimization of b j is achieved by using equation 12, the
constrained fit error for a specific element of the Q -matrix, as a "linear" objec
tive function per element. A weighted sum of these square element errors over the
specified column is used as the "nonlinear" objective function:

(15)
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The weights might be defined to improve the approximations for some elements of Q
(larger Wij) while decreasing the importance of others (smaller Wij).

Design Constraints for Bonlinear Optiaization

Since bj is now allowed to vary, it is necessary to impose side constraints on
its elements. The bR.j must be greater than 0 in order to ensure system stability
as a result of introducing the related aerodynamic states into the state equations.
Also, it is frequently desired to restrict the variation to that range of frequencies
over which tabular data is available.

(0 <) (16)

These side constraints may be enforced in one of two ways. The first is by way
of a sinusoidal transformation of the real line segment [-1,+1] into the design space
defined by (16) (see Ref. 14).

(17)

This transformation ensures that the side constraints are always satisfied. However,
since the restrictions on the zR. are not strictly enforced, on occasion an oscilla
tion problem between successive values of the design parameters arises due to the
multi-valued characteristic of this transformation. Various methods could be applied
to avoid this problem. One could modify the original nonlinear optimization code.
However, since the problem rarely occurs, a penalty function formulation of the non
linear objective function is usually employed (Refs. IS ,16) when it does. Two
examples of available penalty functions are a "wall" function and the extended
interior penalty function. By "wall," we mean that the function essentially hits a
wall when constraints are violated. This technique is implemented by defining the
objective function as very large relative to its normal range of values. This obvi
ously has extreme discontinuities which can sometimes cause convergence problems and
usually requires that an optimization process start within the feasible design space
in which no constraints are violated. The second type of penalty function which may
be selected by the engineer is an extended-interior formulat ion proposed by Haftka
and Starnes (Ref. 15). It places no initial restrictions and does not inject discon
tinuities into the convergence process. This is the preferred type of penalty
function since convergence in this case is smoother. .

Overall Prograa now

Referring to figure 7, the overall optimization can be summarized as follows.
The engineer first determines the form of the RFA to be used and the columns over
which the optimization is to be performed. The process is then started by selecting
an initial set of {bR.j} and design weights, {Wij}. The vectors of coefficients

Aij which minimize the "linear" equality-constrained objective functions, £~j are

then determined for each element in the desired column of the Q -matrix. The nonlin
ear objective function, Ej(bj), is evaluated and a new set of values for the

10
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~esign variables, {btj}, is determined by the nonlinear optimizer. The best set of
Aij'S is then redetermined using linear methods. This process continues until
either a reasonable minimum error is achieved or the engineer decides no further
progress can be made with the current approximations. Even when a minimum error is
achieved, the fits may not be satisfactory. At this point, the engineer must inter
vene and select a different set of initial lag coefficients, increase the number of

t lag coefficients, change the linear constraints, etc., until the approximations are
satisfactory•

•
BOIfGllADIERT NONLINEAR OPTIMIZER.

Sequential Staplex

The nonlinear optimizer used in this multilevel structure is a sequential
simplex (or polytope) method originally proposed by NeIder and Mead (Refs. 6-8). It
has been used in control system design for flexible aircraft with active controls
(Refs. 17,18), along with gradient methods such as the CONMIN - feasible direction
method (Ref. 19), the Davidon-Fletcher-Powell variable metric (Ref. 20,21), and the
newer Davidon Optimally Conditioned method (Ref. 22). It has been found that this
method is extremely simple to use, requiring little or no "fine-tuning." It is an
adaptive method which moves away from "high" points. It requires no gradients and is
a numerically stable and robust algorithm. Since computation of gradients using
finite differencing is costly in large application programs for which closed-form
gradients are either not available or not practical, this nongradient algorithm has
proven to be invaluable. It lacks the initial sensitivities of gradient-based
methods. But, the final two low values and the stepsize between them do provide some
measure (although somewhat obscure) of sensitivity at convergence. At this point,
the gradient could be computed if desired.

The basic mathematical justification of convergence for this algorithm is based
only on the convergence of a monotonically decreasing series. Although its order of
convergence depends upon the function being optimized, it has been found to converge
fairly rapidly in numerical applications.

Description of Algoritba

•

Figure 8 depicts the algorithm for a two-dimensional design space. The algo
rithm starts with a simplex of points in the design space (l\ABC). The objective
function is evaluated at each vertex in the simplex and the highest-valued point is
identified (A). A line of projection through the centroid of the "opposite side"
(namely, the other n vertices) is determined and the objective function is then eval
uated at the reflected point (E) on the projection line. Depending upon the relative
value of the function at this point and the other points in the simplex. a single
extension (F), a retention (E), an exterior contraction (G), or an interior contrac
tion point (H) is then identified at which the objective function is evaluated and a
new simplex is determined. The actual decision process is detailed in references 6-8
although the code as listed (Ref. 7) deviates from the decision process as described
in the reference with respect to those steps taken when equalities hold.

11



Actual Pits

Figure 9 shows the plots of the actual RFA approximations to the original tabu
lar data for one element of the Q -matrix. The circles represent the tabular data,
and the solid dots represent the values of the approximation at the corresponding
frequencies. In both cases, the improvement as a result of including the bR,' s in
the optimization process is significant. Although the "2-lag" case gives a question
able fit, even after optimization of the lag coefficients, the "optimized fit" is an
approximation which might be satisfactory for an initial design of a control system.
The obviously more acceptable fit of the "4-lag" case would be preferable for final
analyses. The" 4-1ag" case, however, introduced an additional 24 states. This
resulted in a total of 4B aerodynamic states due only to the lag coefficients in the
state-space equations for which these approximations were being used.

O>BCLUSIORS

In conclusion, the multilevel structure of the optimization is a natural result
of the form of the approximating functions and prOVides obvious benefits. It reduces
cost since iterative solutions are only required for the nonlinear portion of the
design problem. Closed form algebraic solutions of the "linear" optimization portion
of the problem do not rely on the convergence properties of the "nonlinear" portion.

The nongradient NeIder-Mead sequential simplex algorithm is reliable and
efficient. The method is simple to use and robust in its ability to handle the
nonlinear optimization problem to which it has been applied. Its adaptive nature
requires minimal effort on the part of the engineer to "fine-tune" the problem. It
has provided a cost effective means by which to include "lag" coefficients in the
optimization of the rational function approximations to the generalized aerodynamic
forces in the Laplace domain. Optimization of the lag coefficients can reduce the
number of lag coefficients required to achieve good fits to the tabular unsteady
aerodynam:l.c force data wh:l.le enforc:l.ng needed constraints upon those fits. This
enables the use of smaller linear time-invariant systems in the analysis and design
of flight control systems for aeroe1astic aircraft.
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MODE SHAPES

•

Z(X,Y,t) =

!
Zi(X,y,O)-q i(t)

1",,-_
r-G-E-N-ER-AL-IZ-E-O-COOROINATES "'

Figure 1.- Displacements in terms of modeshapes and generalized coordinates
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s

•

J

~P j a(~P) I aq j

s Laplace variable

S : surface
'"q : Laplace transform of jth

j
generalized cooridinate

Figure 2.- Generalized Aerodynamic Forces
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STATE SPACE EOM:
•
X =AX + au

SAME bQ FOR GIVEN COLUMN

•

:#= AERO. STATES =." (# MODES) X (# LAG COEFF.)

"n q

(> REDUCE NUMBER OF bQ

x

".

Figure 3.- Aerodynamic states.
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Figure 6.- Multilevel optimization structure.
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Figure 7.- Multilevel optimization flow.
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Figure 8.- Two dimensional view of adaptive sequential simplex algorithm.
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Figure 9.- Constrained Rational Function Approximations to original tabular
data for a single element of the q-matrix.
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