53,108 research outputs found

    Fermi-liquid effects in the gapless state of marginally thin superconducting films

    Full text link
    We present low temperature tunneling density-of-states measurements in Al films in high parallel magnetic fields. The thickness range of the films, t=6-9 nm, was chosen so that the orbital and Zeeman contributions to their parallel critical fields were comparable. In this quasi-spin paramagnetically limited configuration, the field produces a significant suppression of the gap, and at high fields the gapless state is reached. By comparing measured and calculated tunneling spectra we are able to extract the value of the antisymmetric Fermi-liquid parameter G^0 and thereby deduce the quasiparticle density dependence of the effective parameter G^0_{eff} across the gapless state.Comment: 6 pages, 4 figure

    Infrared Lighting Does Not Suppress Catch of Codling Moth (Lepidoptera: Tortricidae) in Pheromone-Baited Monitoring Traps

    Get PDF
    Video cameras are increasingly being used to record insect behaviors in the field over prolonged intervals. A nagging question about crepuscular and nocturnal recordings is whether or not infrared light emitted by such cameras to illuminate the scene influences the behaviors of the subjects or study outcomes. Here we quantified catches of male codling moths, Cydia pomonella (L.), responding to sex pheromone-baited monitoring traps illuminated with infrared, red, white, or no light. No statistically significant differences were found between any of these treatments

    On the fourth root prescription for dynamical staggered fermions

    Full text link
    With the aim of resolving theoretical issues associated with the fourth root prescription for dynamical staggered fermions in Lattice QCD simulations, we consider the problem of finding a viable lattice Dirac operator D such that (det D_{staggered})^{1/4} = det D. Working in the flavour field representation we show that in the free field case there is a simple and natural candidate D satisfying this relation, and we show that it has acceptable locality behavior: exponentially local with localisation range vanishing ~ (a/m)^{1/2} for lattice spacing a -> 0. Prospects for the interacting case are also discussed, although we do not solve this case here.Comment: 29 pages, 2 figures; some revision and streamlining of the discussions; results unchanged; to appear in PR

    Poincare duality for K-theory of equivariant complex projective spaces

    Get PDF
    We make explicit Poincare duality for the equivariant K-theory of equivariant complex projective spaces. The case of the trivial group provides a new approach to the K-theory orientation

    Orbital Response of Evanescent Cooper Pairs in Paramagnetically Limited Al Films

    Full text link
    We report a detailed study of the pairing resonance via tunneling density of states in ultra-thin superconducting Al films in supercritical magnetic fields. Particular emphasis is placed on effects of the perpendicular component of the magnetic field on the resonance energy and magnitude. Though the resonance is broadened and attenuated by HH_\bot as expected, its energy is shifted upward linearly with HH_\bot. Extension of the original theory of the resonance to include strong perpendicular fields shows that at sufficiently large HH_\bot the overlap of the broadened resonance tail with the underlying degenerate Fermi sea alters the spectral distribution of the resonance via the exclusion principle. This leads to the shift of the the resonance feature to higher energy.Comment: 8 pages, 4 figure

    Universal properties of knotted polymer rings

    Full text link
    By performing Monte Carlo sampling of NN-steps self-avoiding polygons embedded on different Bravais lattices we explore the robustness of universality in the entropic, metric and geometrical properties of knotted polymer rings. In particular, by simulating polygons with NN up to 10510^5 we furnish a sharp estimate of the asymptotic values of the knot probability ratios and show their independence on the lattice type. This universal feature was previously suggested although with different estimates of the asymptotic values. In addition we show that the scaling behavior of the mean squared radius of gyration of polygons depends on their knot type only through its correction to scaling. Finally, as a measure of the geometrical self-entanglement of the SAPs we consider the standard deviation of the writhe distribution and estimate its power-law behavior in the large NN limit. The estimates of the power exponent do depend neither on the lattice nor on the knot type, strongly supporting an extension of the universality property to some features of the geometrical entanglement.Comment: submitted to Phys.Rev.
    corecore