1,988 research outputs found

    Automatic computation of wing-fuselage intersection lines and fillet inserts with fixed-area constraint

    Get PDF
    Procedures for automatic computation of wing-fuselage juncture geometry are described. These procedures begin with a geometry in wave-drag format. First, an intersection line is computed by extrapolating the wing to the fuselage. Then two types of filleting procedures are described, both of which utilize a combination of analytical and numerical techniques appropriate for automatic calculation. An analytical technique for estimating the added volume due to the fillet is derived, and an iterative procedure for revising the fuselage to compensate for this additional volume is given. Sample results are included in graphical form

    Fuselage design for a specified Mach-sliced area distribution

    Get PDF
    A procedure for designing a fuselage having a prescribed effective area distribution computed from -90 deg Mach slices is described. This type of calculation is an essential tool in designing a complete configuration with an effective area distribution that corresponds to a desired sonic boom signature shape. Sample calculations are given for M=2 and M=3 designs. The examples include fuselages constrained to have circular cross sections and fuselages having cross sections of arbitrary shape. It is found that, for a prescribed effective area distribution having sharp variations, the iterative procedure converges to a smoothed approximation to the prescribed distribution. For a smooth prescribed area distribution, the solution is not unique

    Effects of Atmospheric Nitrogen Deposition on the Herbaceous Layer of a Central Appalachian Hardwood Forest

    Get PDF
    Additions of nitrogen (N) have been shown to alter species diversity of plant communities, with most experimental studies having been carried out in communities dominated by herbaceous species. We examined seasonal and inter-annual patterns of change in the herbaceous layer of two watersheds of a central Appalachian hardwood forest that differed in experimental treatment. This study was carried out at the Fernow Experimental Forest, West Virginia, using two adjacent watersheds: WS4 (mature, second-growth hardwood stand, untreated reference), and WS3. Seven circular 0.04-ha sample plots were established in eachwatershed to represent its full range of elevation and slope aspect. The herbaceous layer was sampled by identifying and visually estimating cover (%) of all vascular plants. Sampling was carried out in mid-July of 1991 and repeated at approximately the same time in 1992. In 1994, these same plots were sampled each month fromMay to October. Seasonal patterns of herb layer dynamics were assessed for the complete 1994 data set, whereasinter-annual variability was based on plot data from 1991, 1992, and the July sample of 1994. There were nosignificant differences between watersheds for any sample year for any of the other herb layer characteristics measured, including herb layer cover, species richness, evenness, and diversity. Cover on WS4 decreased significantly from 1991 to 1992, followed by no change to 1994. By contrast, herb layer cover did not varysignificantly across years on WS3. Cover of the herbaceous layer of both watersheds increased from early in the growing season to the middle of the growing season, decreasing thereafter, with no significant differencesbetween WS3 and WS4 for any of the monthly cover means in 1994. Similar seasonal patterns found for herblayer cover—and lack of significant differences between watersheds—were also evident for species diversityand richness. By contrast, there was little seasonal change in herb layer species evenness, which was nearlyidentical between watersheds for all months except October. Seasonal patterns for individual species/speciesgroups were closely similar between watersheds, especially for Viola rotundifolia and Viola spp. Species richnessand species diversity were linearly related to herb layer cover for both WS3 and WS4, suggesting that spatialand temporal increases in cover were more related to recruitment of herb layer species than to growth of existingspecies. Results of this study indicate that there have been negligible responses of the herb layer to 6 yr of additions to WS3

    Automatic computation of Euler-marching and subsonic grids for wing-fuselage configurations

    Get PDF
    Algebraic procedures are described for the automatic generation of structured, single-block flow computation grids for relatively simple configurations (wing, fuselage, and fin). For supersonic flows, a quasi two-dimensional grid for Euler-marching codes is developed, and some sample results in graphical form are included. A type of grid for subsonic flow calculation is also described. The techniques are algebraic and are based on a generalization of the method of transfinite interpolation

    Factors Influencing Spatial Variability in Nitrogen Processing in Nitrogen-Saturated Soils

    Get PDF
    Nitrogen (N) saturation is an environmental concern for forests in the eastern U.S. Although several watersheds of the Fernow Experimental Forest (FEF), West Virginia exhibit symptoms of Nsaturation, many watersheds display a high degree of spatial variability in soil N processing. This study examined the effects of temperature on net N mineralization and nitrification in N-saturatedsoils from FEF, and how these effects varied between high N-processing vs. low N-processingsoils collected from two watersheds, WS3 (fertilized with [NH4]2SO4) and WS4 (untreated control). Samples of forest floor material (O2 horizon) and mineral soil (to a 5-cm depth) were taken from three subplots within each of four plots that represented the extremes of highest and lowest ratesof net N mineralization and nitrification (hereafter, high N and low N, respectively) of untreated WS4 and N-treated WS3: control/low N, control/high N, N-treated/low N, N-treated/high N. Forest floor material was analyzed for carbon (C), lignin,and N. Subsamples of mineral soil were extractedimmediately with 1 N KCl and analyzed for NH4+and NO3– to determine preincubation levels. Extracts were also analyzed for Mg, Ca, Al, and pH. To test the hypothesis that the lack of net nitrification observed in field incubations on the untreated/low N plot was the result of absence ofnitrifier populations, we characterized the bacterial community involved in N cycling by amplification of amoA genes. Remaining soil was incubated for 28 d at three temperatures (10, 20, and30°C), followed by 1 N KCl extraction and analysis for NH4+ and NO3–. Net nitrification was essentially 100% of net N mineralization for all samples combined. Nitrification rates from lab incubation sat all temperatures supported earlier observations based on field incubations. At 30°C, rates from N- t reated/high N were three times those of N-treated/low N. Highest rates were found for untreated/high N (two times greater than those of N-treated/high N), whereas untreated/low N exhibited no net nitrification. However, soils exhibitingno net nitrification tested positive for presence of nitrifying bacteria, causing us to reject our initial hypothesis. We hypothesize that nitrifier populations in such soil are being inhibited by a combination of low Ca:Al ratios in mineral soil and allelopathic interactions with mycorrhizae of ericaceous species in the herbaceous layer

    Effects of Silvicultural Practices on Soil Carbon and Nitrogen in a Nitrogen Saturated Central Appalachian (USA) Hardwood Forest Ecosystem

    Get PDF
    Silvicultural treatments represent disturbances to forest ecosystems often resulting in transient increases in net nitrification and leaching of nitrate and base cations from the soil. Response of soil carbon (C) is more complex, decreasing from enhanced soil respiration and increasing from enhanced postharvest inputs of detritus. Because nitrogen (N) saturation can have similar effects on cation mobility, timber harvesting in N-saturated forests may contribute to a decline in both soil C and base cation fertility, decreasing tree growth. Although studies have addressed effects of either forest harvesting or N saturation separately, few data exist on their combined effects. Our study examined the responses of soil C and N to several commercially used silvicultural treatments within the Fernow Experimental Forest, West Virginia, USA, a site with N-saturated soils. Soil analyses included soil organic matter (SOM), C, N, C/N ratios, pH, and net nitrification. We hypothesized the following gradient of disturbance intensity among silvicultural practices (from most to least intense): even-age with intensive harvesting (EA-I), even-age with extensive harvesting, even-age with commercial harvesting, diameter limit, and single-tree harvesting (ST). We anticipated that effects on soil C and N would be greatest for EA-I and least with ST. Tree species exhibited a response to the gradient of disturbance intensity, with early successional species more predominant in high-intensity treatments and late successional species more predominant in low-intensity treatments. Results for soil variables, however, generally did not support our predictions, with few significant differences among treatments and between treatments and their paired controls for any of the measured soil variables. Multiple regression indicated that the best predictors for net nitrification among samples were SOM (positive relationship) and pH (negative relationship). This finding confirms the challenge of sustainable management of N-saturated forests

    Soil Chemical Response to Experimental Acidification Treatments

    Get PDF
    One of the conclusions reached during the Congressionally mandated National Acid Precipitation Program (NAPAP) was that, compared to ozone and other stress factors, the direct effects of acidic deposition on forest health and productivity were likely to be relatively minor. However, the report also concluded “the possibility of long-term (several decades) adverse effects on some soils appears realistic” (Barnard et al. 1990). Possible mechanisms for these long-term effects include: (1) accelerated leaching of base cations from soils and foliage, (2) increased mobilization of aluminum (Al) and other metals such as manganese (Mn), (3) inhibition of soil biological processes, including organic matter decomposition, and (4) increased bioavailability of nitrogen (N)

    Vegetation and Acidification

    Get PDF
    In this chapter, the impact of watershed acidification treatments on WS3 at the Fernow Experimental Forest (FEF) and at WS9 on vegetation is presented and summarized in a comprehensive way for the first time. WS7 is used as a vegetative reference basin for WS3, while untreated plots within WS9 are used as a vegetative reference for WS9. Bioindicators of acidification impacts that will be considered include several measures of tree and stand growth rates, foliar chemistry, bolewood chemistry, and herbaceous species composition and diversity. These studies enhance our understanding of the inter-relationships of changes in soil conditions caused by the acidification treatment and the condition of forest vegetation
    corecore