2,369 research outputs found

    Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do not form robust Senescence Associated Heterochromatin Foci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cellular senescence is a permanent growth arrest that occurs in response to cellular stressors, such as telomere shortening or activation of oncogenes. Although the process of senescence growth arrest is somewhat conserved between mouse and human cells, there are some critical differences in the molecular pathways of senescence between these two species. Recent studies in human fibroblasts have defined a cell signaling pathway that is initiated by repression of a specific Wnt ligand, Wnt2. This, in turn, activates a histone chaperone HIRA, and culminates in formation of specialized punctate domains of facultative heterochromatin, called Senescence-Associated Heterochromatin Foci (SAHF), that are enriched in the histone variant, macroH2A. SAHF are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. We asked whether this Wnt2-HIRA-SAHF pathway is conserved in mouse fibroblasts.</p> <p>Results</p> <p>We show that mouse embryo fibroblasts (MEFs) and mouse skin fibroblasts, do not form robust punctate SAHF in response to an activated Ras oncogene or shortened telomeres. However, senescent MEFs do exhibit elevated levels of macroH2A staining throughout the nucleus as a whole. Consistent with their failure to fully activate the SAHF assembly pathway, the Wnt2-HIRA signaling axis is not overtly regulated between proliferating and senescent mouse cells.</p> <p>Conclusions</p> <p>In addition to the previously defined differences between mouse and human cells in the mechanisms and phenotypes associated with senescence, we conclude that senescent mouse and human fibroblasts also differ at the level of chromatin and the signaling pathways used to regulate chromatin. These differences between human and mouse senescence may contribute to the increased propensity of mouse fibroblasts (and perhaps other mouse cell types) to become immortalized and transformed, compared to human cells.</p

    Lamin B1 Depletion in Senescent Cells Triggers Large-Scale Changes in Gene Expression and the Chromatin Landscape

    Get PDF
    Senescence is a stable proliferation arrest, associated with an altered secretory pathway, thought to promote tumor suppression and tissue aging. While chromatin regulation and lamin B1 down-regulation have been implicated as senescence effectors, functional interactions between them are poorly understood. We compared genome-wide Lys4 trimethylation on histone H3 (H3K4me3) and H3K27me3 distributions between proliferating and senescent human cells and found dramatic differences in senescence, including large-scale domains of H3K4me3- and H3K27me3-enriched “mesas” and H3K27me3-depleted “canyons.” Mesas form at lamin B1-associated domains (LADs) in replicative senescence and oncogene-induced senescence and overlap DNA hypomethylation regions in cancer, suggesting that pre-malignant senescent chromatin changes foreshadow epigenetic cancer changes. Hutchinson-Gilford progeria syndrome fibroblasts (mutant lamin A) also show evidence of H3K4me3 mesas, suggesting a link between premature chromatin changes and accelerated cell senescence. Canyons mostly form between LADs and are enriched in genes and enhancers. H3K27me3 loss is correlated with up-regulation of key senescence genes, indicating a link between global chromatin changes and local gene expression regulation. Lamin B1 reduction in proliferating cells triggers senescence and formation of mesas and canyons. Our data illustrate profound chromatin reorganization during senescence and suggest that lamin B1 down-regulation in senescence is a key trigger of global and local chromatin changes that impact gene expression, aging, and cancer

    Influence of a foliar endophyte and budburst phenology on survival of wild and laboratory-reared eastern spruce budworm, Choristoneura fumiferana on white spruce (Picea glauca)

    Get PDF
    A manipulative field study was carried out to determine whether the foliar endophyte fungus, Phialocephala scopiformisDAOM229536, decreased the performance of eastern spruce budworm, Choristoneura fumiferana larvae developing on white spruce trees. Overwintered second-instar budworm larvae from a laboratory colony or from a wild population were placed on endophyte positive or negative trees one or two weeks before budburst. The presence of the endophyte in the needles reduced the survival of C. fumiferana from both a wild population and a laboratory colony. Survival for budworm juveniles up to pupation and to adult emergence was 13% and 17% lower, respectively, on endophyte positive trees. The endophyte did not influence the size or sex of survivors and budwor

    Droplet Size Impact on Efficacy of a Dicamba-plus-Glyphosate Mixture

    Get PDF
    Chemical weed control remains a widely used component of integrated weed management strategies because of its cost-effectiveness and rapid removal of crop pests. Additionally, dicamba-plus-glyphosate mixtures are a commonly recommended herbicide combination to combat herbicide resistance, specifically in recently commercially released dicamba-tolerant soybean and cotton. However, increased spray drift concerns and antagonistic interactions require that the application process be optimized to maximize biological efficacy while minimizing environmental contamination potential. Field research was conducted in 2016, 2017, and 2018 across three locations (Mississippi, Nebraska, and North Dakota) for a total of six site-years. The objectives were to characterize the efficacy of a range of droplet sizes [150 μm (Fine) to 900 μm (Ultra Coarse)] using a dicamba-plus-glyphosate mixture and to create novel weed management recommendations utilizing pulse-width modulation (PWM) sprayer technology. Results across pooled site-years indicated that a droplet size of 395 μm (Coarse) maximized weed mortality from a dicamba-plus-glyphosate mixture at 94 L ha–1. However, droplet size could be increased to 620 μm (Extremely Coarse) to maintain 90% of the maximum weed mortality while further mitigating particle drift potential. Although generalized droplet size recommendations could be created across site-years, optimum droplet sizes within each site-year varied considerably and may be dependent on weed species, geographic location, weather conditions, and herbicide resistance(s) present in the field. The precise, site-specific application of a dicamba-plus-glyphosate mixture using the results of this research will allow applicators to more effectively utilize PWM sprayers, reduce particle drift potential, maintain biological efficacy, and reduce the selection pressure for the evolution of herbicide-resistant weeds

    Mll1 is essential for the senescenceassociated secretory phenotype

    Get PDF
    Oncogene-induced senescence (OIS) and therapy-induced senescence (TIS), while tumor-suppressive, also promote procarcinogenic effects by activating the DNA damage response (DDR), which in turn induces inflammation. This inflammatory response prominently includes an array of cytokines known as the senescence-associated secretory phenotype (SASP). Previous observations link the transcription-associated methyltransferase and oncoprotein MLL1 to the DDR, leading us to investigate the role of MLL1 in SASP expression. Our findings reveal direct MLL1 epigenetic control over proproliferative cell cycle genes: MLL1 inhibition represses expression of proproliferative cell cycle regulators required for DNA replication and DDR activation, thus disabling SASP expression. Strikingly, however, these effects of MLL1 inhibition on SASP gene expression do not impair OIS and, furthermore, abolish the ability of the SASP to enhance cancer cell proliferation. More broadly, MLL1 inhibition also reduces “SASP-like” inflammatory gene expression from cancer cells in vitro and in vivo independently of senescence. Taken together, these data demonstrate that MLL1 inhibition may be a powerful and effective strategy for inducing cancerous growth arrest through the direct epigenetic regulation of proliferation-promoting genes and the avoidance of deleterious OIS- or TIS-related tumor secretomes, which can promote both drug resistance and tumor progression

    The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer.

    Get PDF
    The androgen receptor (AR) is the dominant growth factor in prostate cancer (PCa). Therefore, understanding how ARs regulate the human transcriptome is of paramount importance. The early effects of castration on human PCa have not previously been studied 27 patients medically castrated with degarelix 7 d before radical prostatectomy. We used mass spectrometry, immunohistochemistry, and gene expression array (validated by reverse transcription-polymerase chain reaction) to compare resected tumour with matched, controlled, untreated PCa tissue. All patients had levels of serum androgen, with reduced levels of intraprostatic androgen at prostatectomy. We observed differential expression of known androgen-regulated genes (TMPRSS2, KLK3, CAMKK2, FKBP5). We identified 749 genes downregulated and 908 genes upregulated following castration. AR regulation of α-methylacyl-CoA racemase expression and three other genes (FAM129A, RAB27A, and KIAA0101) was confirmed. Upregulation of oestrogen receptor 1 (ESR1) expression was observed in malignant epithelia and was associated with differential expression of ESR1-regulated genes and correlated with proliferation (Ki-67 expression).We thank CRUK, The NIHR, The Academy of Medical Sciences(RG:63397) and the National Cancer Research Prostate Cancer: Mechanisms of Progression and Treatment (ProMPT) collaborative (G0500966/75466), Hutchison Whampoa Limited, the Human Research Tissue Bank (Addenbrooke’s Hospital, supported by the NIHR Cambridge BRC), and Cancer Research UK

    Temperature response surfaces for mortality risk of tree species with future drought

    Get PDF
    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7–9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.Peer reviewedPlant Biology, Ecology and Evolutio

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function
    • …
    corecore