384 research outputs found
Natural Inflation From Fermion Loops
``Natural'' inflationary theories are a class of models in which inflation is
driven by a pseudo-Nambu-Goldstone boson. In this paper we consider two models,
one old and one new, in which the potential for inflation is generated by loop
effects from a fermion sector which explicitly breaks a global symmetry.
In both models, we retrieve the ``standard'' natural inflation potential,
, as a limiting case of the exact one-loop potential, but we
carry out a general analysis of the models including the limiting case.
Constraints from the COBE DMR observation and from theoretical consistency are
used to limit the parameters of the models, and successful inflation occurs
without the necessity of fine-tuning the parameters.Comment: (Revised) 15 pages, LaTeX (revTeX), 8 figures in uuencoded PostScript
format. Version accepted for publication in Phys. Rev. D 15. Corrected
definition of power spectrum and added three reference
Mammalian Target of Rapamycin (mTOR), Aging, Neuroscience, and Their Association with Aging-Related Diseases
Normal aging is accompanied by cognitive impairment with subtle cellular and molecular changes in the brain, whereas, pathological brain aging manifests as severe behavioral impairments with cellular pathology. Understanding the factors that contribute to both states is undoubtedly important for determining appropriate interventions that alter their progression. Mammalian target of rapamycin (mTOR) signaling has been implicated in affecting lifespan and age-related diseases such as cancer. The relationship of mTOR signaling with pathological brain aging has been more extensively studied, whereas the association with normal brain aging is not well understood. In this chapter we present information about normal and pathological brain aging, the relationship with mTOR signaling and use information from other age-related diseases to suggest that mTOR may have a role in promoting the cellular and molecular changes that underlie age-related cognitive changes. Future work should be directed towards understanding the precise role of mTOR signaling in brain aging. © 2016 Elsevier Inc. All rights reserved
Subprocess Size in Hard Exclusive Scattering
The interaction region of hard exclusive hadron scattering can have a large
transverse size due to endpoint contributions, where one parton carries most of
the hadron momentum. The endpoint region is enhanced and can dominate in
processes involving multiple scattering and quark helicity flip. The endpoint
Fock states have perturbatively short lifetimes and scatter softly in the
target. We give plausible arguments that endpoint contributions can explain the
apparent absence of color transparency in fixed angle exclusive scattering and
the dimensional scaling of transverse rho photoproduction at high momentum
transfer, which requires quark helicity flip. We also present a quantitative
estimate of Sudakov effects.Comment: 16 pages, 4 figures, JHEP style; v2: quantitative estimate of Sudakov
effects and more detailed discussion of endpoint behaviour of meson
distribution amplitude added, few other clarifications, version to appear in
Phys. Rev.
Duality Invariance of Cosmological Perturbation Spectra
I show that cosmological perturbation spectra produced from quantum
fluctuations in massless or self-interacting scalar fields during an
inflationary era remain invariant under a two parameter family of
transformations of the homogeneous background fields. This relates slow-roll
inflation models to solutions which may be far from the usual slow-roll limit.
For example, a scale-invariant spectrum of perturbations in a minimally
coupled, massless field can be produced by an exponential expansion with
, or by a collapsing universe with .Comment: 5 pages, Latex with Revtex. Hamiltonian formulation added and
discussion expanded. Version to appear in Phys Rev
Inflation, cold dark matter, and the central density problem
A problem with high central densities in dark halos has arisen in the context
of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is
often justified by appealing to the inflation scenario, inflationary models
with mild deviations from scale-invariance are not uncommon and models with
significant running of the spectral index are plausible. Even mild deviations
from scale-invariance can be important because halo collapse times and
densities depend on the relative amount of small-scale power. We choose several
popular models of inflation and work out the ramifications for galaxy central
densities. For each model, we calculate its COBE-normalized power spectrum and
deduce the implied halo densities using a semi-analytic method calibrated
against N-body simulations. We compare our predictions to a sample of dark
matter-dominated galaxies using a non-parametric measure of the density. While
standard n=1, LCDM halos are overdense by a factor of 6, several of our example
inflation+CDM models predict halo densities well within the range preferred by
observations. We also show how the presence of massive (0.5 eV) neutrinos may
help to alleviate the central density problem even with n=1. We conclude that
galaxy central densities may not be as problematic for the CDM paradigm as is
sometimes assumed: rather than telling us something about the nature of the
dark matter, galaxy rotation curves may be telling us something about inflation
and/or neutrinos. An important test of this idea will be an eventual consensus
on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our
successful models have values of sigma_8 approximately 0.75, which is within
the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1)
are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's
Comments, error in Eq. (18) corrected, references updated and corrected,
conclusions unchanged. Version accepted for publication in Phys. Rev. D,
scheduled for 15 August 200
Inflationary perturbations from a potential with a step
We use a numerical code to compute the density perturbations generated during
an inflationary epoch which includes a spontaneous symmetry breaking phase
transition. A sharp step in the inflaton potential generates dependent
oscillations in the spectrum of primordial density perturbations. The amplitude
and extent in wavenumber of these oscillations depends on both the magnitude
and gradient of the step in the inflaton potential. We show that observations
of the cosmic microwave background anisotropy place strong constraints on the
step parameters.Comment: 6 pages, Revtex - v2. reference adde
Cosmological parameter estimation and the inflationary cosmology
We consider approaches to cosmological parameter estimation in the
inflationary cosmology, focussing on the required accuracy of the initial power
spectra. Parametrizing the spectra, for example by power-laws, is well suited
to testing the inflationary paradigm but will only correctly estimate
cosmological parameters if the parametrization is sufficiently accurate, and we
investigate conditions under which this is achieved both for present data and
for upcoming satellite data. If inflation is favoured, reliable estimation of
its physical parameters requires an alternative approach adopting its detailed
predictions. For slow-roll inflation, we investigate the accuracy of the
predicted spectra at first and second order in the slow-roll expansion
(presenting the complete second-order corrections for the tensors for the first
time). We find that within the presently-allowed parameter space, there are
regions where it will be necessary to include second-order corrections to reach
the accuracy requirements of MAP and Planck satellite data. We end by proposing
a data analysis pipeline appropriate for testing inflation and for cosmological
parameter estimation from high-precision data.Comment: 15 pages RevTeX file with figures incorporated. Slow-roll inflation
module for use with the CAMB program can be found at
http://astronomy.cpes.susx.ac.uk/~sleach/inflation/ This version corrects a
typo in the definition of z_S (after Eq.1) and supersedes the journal versio
What Can WMAP Tell Us About The Very Early Universe? New Physics as an Explanation of Suppressed Large Scale Power and Running Spectral Index
The Wilkinson Microwave Anisotropy Probe microwave background data may be
giving us clues about new physics at the transition from a ``stringy'' epoch of
the universe to the standard Friedmann Robertson Walker description. Deviations
on large angular scales of the data, as compared to theoretical expectations,
as well as running of the spectral index of density perturbations, can be
explained by new physics whose scale is set by the height of an inflationary
potential. As examples of possible signatures for this new physics, we study
the cosmic microwave background spectrum for two string inspired models: 1)
modifications to the Friedmann equations and 2) velocity dependent potentials.
The suppression of low ``l'' modes in the microwave background data arises due
to the new physics. In addition, the spectral index is red (n<1) on small
scales and blue (n>1) on large scales, in agreement with data.Comment: 18 pages, 2 figures, submitted for publication in Physical Review D,
references added in this versio
An inflation model with large variations in spectral index
Recent fits of cosmological parameters by the Wilkinson Microwave Anisotropy
Probe (WMAP) measurement favor a primordial scalar spectrum with varying index.
This result, if stands, could severely constrain inflation model buildings.
Most extant slow-roll inflation models allow for only a tiny amount of scale
variations in the spectrum. We propose in this paper an extra-dimensional
inflation model which is natural theoretically and can generate the required
variations of the spectral index as implied by the WMAP for suitable choices of
parameters.Comment: 5 pages, 3 figures, REVTeX 4. Comments on low CMB quadrupoles added;
Version accepted for publication in Phys. Rev.
Inflation at Low Scales: General Analysis and a Detailed Model
Models of inflationary cosmology based on spontaneous symmetry breaking
typically suffer from the shortcoming that the symmetry breaking scale is
driven to nearly the Planck scale by observational constraints. In this paper
we investigate inflationary potentials in a general context, and show that this
difficulty is characteristic only of potentials dominated near their
maxima by terms of order . We find that potentials dominated by terms
of order with \hbox{} can satisfy observational constraints at
an arbitrary symmetry breaking scale. Of particular interest, the spectral
index of density fluctuations is shown to depend only on the order of the
lowest non-vanishing derivative of near the maximum. This result is
illustrated in the context of a specific model, with a broken
symmetry, in which the potential is generated by gauge boson loops.Comment: Submitted to Phys. Rev. D. 32 Pages, REVTeX. No figure
- …