39 research outputs found
Viral and bacterial etiology of severe acute respiratory illness among children < 5 years of age without influenza in Niger.
International audienceGlobally, pneumonia is the leading cause of morbidity and mortality in children, with the highest burden experienced in sub-Saharan Africa and Asia. However, there is a dearth of information on the etiology of severe acute respiratory illness (SARI) in Africa, including Niger. We implemented a retrospective study as part of national influenza sentinel surveillance in Niger. We randomly selected a sample of nasopharyngeal specimens collected from children <5 years of age hospitalized with SARI from January 2010 through December 2012 in Niger. The samples were selected from individuals that tested negative by real-time reverse transcription polymerase chain reaction (rRT-PCR) for influenza A and B virus. The samples were analyzed using the Fast Track Diagnostic Respiratory Pathogens 21plus Kit (BioMérieux, Luxemburg), which detects 23 respiratory pathogens including 18 viral and 5 bacterial agents. Among the 160 samples tested, 138 (86%) tested positive for at least one viral or bacterial pathogen; in 22 (16%) sample, only one pathogen was detected. We detected at least one respiratory virus in 126 (78%) samples and at least one bacterium in 102 (64%) samples. Respiratory syncytial virus (56/160; 35%), rhinovirus (47/160; 29%) and parainfluenza virus (39/160; 24%) were the most common viral pathogens detected. Among bacterial pathogens, Streptococcus pneumoniae (90/160; 56%) and Haemophilus influenzae type b (20/160; 12%) predominated. The high prevalence of certain viral and bacterial pathogens among children <5 years of age with SARI highlights the need for continued and expanded surveillance in Niger
The epidemiology of seasonal influenza after the 2009 influenza pandemic in Africa: a systematic review
Background: Influenza infection is a serious public health problem that
causes an estimated 3 to 5 million cases and 250,000 deaths worldwide
every year. The epidemiology of influenza is well-documented in high-
and middle-income countries, however minimal effort had been made to
understand the epidemiology, burden and seasonality of influenza in
Africa. This study aims to assess the state of knowledge of seasonal
influenza epidemiology in Africa and identify potential data gaps for
policy formulation following the 2009 pandemic. Method: We reviewed
articles from Africa published into four databases namely: MEDLINE
(PubMed), Google Scholar, Cochrane Library and Scientific Research
Publishing from 2010 to 2019. Results: We screened titles and abstracts
of 2070 studies of which 311 were selected for full content evaluation
and 199 studies were considered. Selected articles varied substantially
on the basis of the topics they addressed covering the field of
influenza surveillance (n=80); influenza risk factors and
co-morbidities (n=15); influenza burden (n=37); influenza vaccination
(n=40); influenza and other respiratory pathogens (n=22) and influenza
diagnosis (n=5). Conclusion: Significant progress has been made since
the last pandemic in understanding the influenza epidemiology in
Africa. However, efforts still remain for most countries to have
sufficient data to allow countries to prioritize strategies for
influenza prevention and control
Diagnostic accuracy of VIKIA® Rota-Adeno and Premier™ Rotaclone® tests for the detection of rotavirus in Niger
Influenza surveillance capacity improvements in Africa during 2011-2017.
BACKGROUND: Influenza surveillance helps time prevention and control interventions especially where complex seasonal patterns exist. We assessed influenza surveillance sustainability in Africa where influenza activity varies and external funds for surveillance have decreased. METHODS: We surveyed African Network for Influenza Surveillance and Epidemiology (ANISE) countries about 2011-2017 surveillance system characteristics. Data were summarized with descriptive statistics and analyzed with univariate and multivariable analyses to quantify sustained or expanded influenza surveillance capacity in Africa. RESULTS: Eighteen (75%) of 24 ANISE members participated in the survey; their cumulative population of 710 751 471 represent 56% of Africa's total population. All 18 countries scored a mean 95% on WHO laboratory quality assurance panels. The number of samples collected from severe acute respiratory infection case-patients remained consistent between 2011 and 2017 (13 823 vs 13 674 respectively) but decreased by 12% for influenza-like illness case-patients (16 210 vs 14 477). Nine (50%) gained capacity to lineage-type influenza B. The number of countries reporting each week to WHO FluNet increased from 15 (83%) in 2011 to 17 (94%) in 2017. CONCLUSIONS: Despite declines in external surveillance funding, ANISE countries gained additional laboratory testing capacity and continued influenza testing and reporting to WHO. These gains represent important achievements toward sustainable surveillance and epidemic/pandemic preparedness
The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern—particularly Alpha, Beta, Delta, and Omicron—on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Retraction.
This is a retraction of 'Gradual emergence followed by exponential spread of the SARS-CoV-2 Omicron variant in Africa' 10.1126/science.add873
Emergence and spread of the SARS-CoV-2 omicron (BA.1) variant across Africa: an observational study.
BACKGROUND: In mid-November, 2021, the SARS-CoV-2 omicron variant (B.1.1.529; BA.1 sublineage) was detected in southern Africa, prompting international travel restrictions. We aimed to investigate the spread of omicron BA.1 in Africa. METHODS: In this observational study, samples from patients infected with SARS-CoV-2 from 27 laboratories in 24 African countries, collected between June 1, 2021 and April 14, 2022, were tested for omicron BA.1 and delta (B.1.617.2) variants using real-time RT-PCR. Samples that tested positive for BA.1 by RT-PCR and were collected before estimated BA.1 emergence according to epidemiological properties were excluded from downstream analyses. The diagnostic precision of the assays was evaluated by high-throughput sequencing of samples from four countries. The observed spread of BA.1 was compared with mobility-based mathematical simulations and entries for SARS-CoV-2 in the Global Initiative on Sharing All Influenza Data (GISAID) genomic database. We estimated the effective reproduction number (Rt) at the country level considering the BA.1 fraction and the reported numbers of infections. Phylogeographical analyses were done in a Bayesian framework. FINDINGS: Through testing of 13 294 samples from patients infected with SARS-CoV-2, we established that, by November-December, 2021, omicron BA.1 had replaced the delta variant of SARS-CoV-2 in all African subregions, following a south-north gradient, with a median Rt of 2·60 (95% CI 2·46-2·71). This south-north spread, established on the basis of PCR data, was substantiated by phylogeographical reconstructions, ancestral state reconstructions, and GISAID data. PCR-based reconstructions of country-level BA.1 predominance and the availability of BA.1 genomic sequences in GISAID correlated significantly in time (p=0·0002, r=0·78). The first detections of BA.1 in high-income settings beyond Africa were predicted accurately in time by mobility-based mathematical simulations (p<0·0001). Comparing PCR-based reconstructions with mobility-based mathematical simulations suggested that SARS-CoV-2 infections in Africa were under-reported by approximately ten times. Inbound travellers infected with BA.1, departing from five continents, were identified in six African countries by early December, 2021. INTERPRETATION: Omicron BA.1 was widespread in Africa when travel bans were implemented, limiting their effectiveness. Combined with genomic surveillance and mobility-based mathematical modelling, PCR-based strategies can inform Rt and the geographical spread of emerging pathogens in a cost-effective and timely manner, and can guide evidence-based, non-pharmaceutical interventions such as travel restrictions or physical distancing. FUNDING: Bill & Melinda Gates Foundation. TRANSLATIONS: For the French, Portugese and Spanish translations of the abstract see Supplementary Materials section
Gradual emergence followed by exponential spread of the SARS-CoV-2 Omicron variant in Africa.
The geographic and evolutionary origins of the SARS-CoV-2 Omicron variant (BA.1), which was first detected mid-November 2021 in Southern Africa, remain unknown. We tested 13,097 COVID-19 patients sampled between mid-2021 to early 2022 from 22 African countries for BA.1 by real-time RT-PCR. By November-December 2021, BA.1 had replaced the Delta variant in all African sub-regions following a South-North gradient, with a peak Rt of 4.1. Polymerase chain reaction and near-full genome sequencing data revealed genetically diverse Omicron ancestors already existed across Africa by August 2021. Mutations, altering viral tropism, replication and immune escape, gradually accumulated in the spike gene. Omicron ancestors were therefore present in several African countries months before Omicron dominated transmission. These data also indicate that travel bans are ineffective in the face of undetected and widespread infection
Emergence and spread of the SARS-CoV-2 omicron (BA.1) variant across Africa: an observational study.
In mid-November, 2021, the SARS-CoV-2 omicron variant (B.1.1.529; BA.1 sublineage) was detected in southern Africa, prompting international travel restrictions. We aimed to investigate the spread of omicron BA.1 in Africa. In this observational study, samples from patients infected with SARS-CoV-2 from 27 laboratories in 24 African countries, collected between June 1, 2021 and April 14, 2022, were tested for omicron BA.1 and delta (B.1.617.2) variants using real-time RT-PCR. Samples that tested positive for BA.1 by RT-PCR and were collected before estimated BA.1 emergence according to epidemiological properties were excluded from downstream analyses. The diagnostic precision of the assays was evaluated by high-throughput sequencing of samples from four countries. The observed spread of BA.1 was compared with mobility-based mathematical simulations and entries for SARS-CoV-2 in the Global Initiative on Sharing All Influenza Data (GISAID) genomic database. We estimated the effective reproduction number (R ) at the country level considering the BA.1 fraction and the reported numbers of infections. Phylogeographical analyses were done in a Bayesian framework. Through testing of 13 294 samples from patients infected with SARS-CoV-2, we established that, by November-December, 2021, omicron BA.1 had replaced the delta variant of SARS-CoV-2 in all African subregions, following a south-north gradient, with a median R of 2·60 (95% CI 2·46-2·71). This south-north spread, established on the basis of PCR data, was substantiated by phylogeographical reconstructions, ancestral state reconstructions, and GISAID data. PCR-based reconstructions of country-level BA.1 predominance and the availability of BA.1 genomic sequences in GISAID correlated significantly in time (p=0·0002, r=0·78). The first detections of BA.1 in high-income settings beyond Africa were predicted accurately in time by mobility-based mathematical simulations (p<0·0001). Comparing PCR-based reconstructions with mobility-based mathematical simulations suggested that SARS-CoV-2 infections in Africa were under-reported by approximately ten times. Inbound travellers infected with BA.1, departing from five continents, were identified in six African countries by early December, 2021. Omicron BA.1 was widespread in Africa when travel bans were implemented, limiting their effectiveness. Combined with genomic surveillance and mobility-based mathematical modelling, PCR-based strategies can inform R and the geographical spread of emerging pathogens in a cost-effective and timely manner, and can guide evidence-based, non-pharmaceutical interventions such as travel restrictions or physical distancing. Bill & Melinda Gates Foundation. For the French, Portugese and Spanish translations of the abstract see Supplementary Materials section. [Abstract copyright: Copyright © 2025 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
