60 research outputs found
The hadron-quark phase transition in dense matter and neutron stars
We study the hadron-quark phase transition in the interior of neutron stars
(NS's). We calculate the equation of state (EOS) of hadronic matter using the
Brueckner-Bethe-Goldstone formalism with realistic two-body and three-body
forces, as well as a relativistic mean field model. For quark matter we employ
the MIT bag model constraining the bag constant by using the indications coming
from the recent experimental results obtained at the CERN SPS on the formation
of a quark-gluon plasma. We find necessary to introduce a density dependent bag
parameter, and the corresponding consistent thermodynamical formalism. We
calculate the structure of NS interiors with the EOS comprising both phases,
and we find that the NS maximum masses fall in a relatively narrow interval,
. The precise value of the
maximum mass turns out to be only weakly correlated with the value of the
energy density at the assumed transition point in nearly symmetric nuclear
matter.Comment: 25 pages, Revtex4, 16 figures included as postscrip
Maximum mass of neutron stars with a quark core
Massive neutron stars (NS) are expected to possess a quark core. While the
hadronic side of the NS equation of state (EOS) can be considered well
established, the quark side is quite uncertain. While calculating the EOS of
hadronic matter we have used the Brueckner-Bethe-Goldstone formalism with
realistic two-body and three-body forces, as well as a relativistic mean field
model. For quark matter we employ the MIT bag model constraining the bag
constant by exploiting the recent experimental results obtained at CERN on the
formation of a quark-gluon plasma. We calculate the structure of NS interiors
with the EOS comprising both phases, and we find that the NS maximum masses
fall in a relatively narrow interval, , near the lower limit of the observational range.Comment: 12 pages, TeX, submitted to Physics Letters
Eco-evolutionary dynamics on deformable fitness landscapes
Conventional approaches to modelling ecological dynamics often do not include evolutionary changes in the genetic makeup of component species and, conversely, conventional approaches to modelling evolutionary changes in the genetic makeup of a population often do not include ecological dynamics. But recently there has been considerable interest in understanding the interaction of evolutionary and ecological dynamics as coupled processes. However, in the context of complex multi-species ecosytems, especially where ecological and evolutionary timescales are similar, it is difficult to identify general organising principles that help us understand the structure and behaviour of complex ecosystems. Here we introduce a simple abstraction of coevolutionary interactions in a multi-species ecosystem. We model non-trophic ecological interactions based on a continuous but low-dimensional trait/niche space, where the location of each species in trait space affects the overlap of its resource utilisation with that of other species. The local depletion of available resources creates, in effect, a deformable fitness landscape that governs how the evolution of one species affects the selective pressures on other species. This enables us to study the coevolution of ecological interactions in an intuitive and easily visualisable manner. We observe that this model can exhibit either of the two behavioural modes discussed in the literature; namely, evolutionary stasis or Red Queen dynamics, i.e., continued evolutionary change. We find that which of these modes is observed depends on the lag or latency between the movement of a species in trait space and its effect on available resources. Specifically, if ecological change is nearly instantaneous compared to evolutionary change, stasis results; but conversely, if evolutionary timescales are closer to ecological timescales, such that resource depletion is not instantaneous on evolutionary timescales, then Red Queen dynamics result. We also observe that in the stasis mode, the overall utilisation of resources by the ecosystem is relatively efficient, with diverse species utilising different niches, whereas in the Red Queen mode the organisation of the ecosystem is such that species tend to clump together competing for overlapping resources. These models thereby suggest some basic conditions that influence the organisation of inter-species interactions and the balance of individual and collective adaptation in ecosystems, and likewise they also suggest factors that might be useful in engineering artificial coevolution
Clusters of galaxies: setting the stage
Clusters of galaxies are self-gravitating systems of mass ~10^14-10^15 Msun.
They consist of dark matter (~80 %), hot diffuse intracluster plasma (< 20 %)
and a small fraction of stars, dust, and cold gas, mostly locked in galaxies.
In most clusters, scaling relations between their properties testify that the
cluster components are in approximate dynamical equilibrium within the cluster
gravitational potential well. However, spatially inhomogeneous thermal and
non-thermal emission of the intracluster medium (ICM), observed in some
clusters in the X-ray and radio bands, and the kinematic and morphological
segregation of galaxies are a signature of non-gravitational processes, ongoing
cluster merging and interactions. In the current bottom-up scenario for the
formation of cosmic structure, clusters are the most massive nodes of the
filamentary large-scale structure of the cosmic web and form by anisotropic and
episodic accretion of mass. In this model of the universe dominated by cold
dark matter, at the present time most baryons are expected to be in a diffuse
component rather than in stars and galaxies; moreover, ~50 % of this diffuse
component has temperature ~0.01-1 keV and permeates the filamentary
distribution of the dark matter. The temperature of this Warm-Hot Intergalactic
Medium (WHIM) increases with the local density and its search in the outer
regions of clusters and lower density regions has been the quest of much recent
observational effort. Over the last thirty years, an impressive coherent
picture of the formation and evolution of cosmic structures has emerged from
the intense interplay between observations, theory and numerical experiments.
Future efforts will continue to test whether this picture keeps being valid,
needs corrections or suffers dramatic failures in its predictive power.Comment: 20 pages, 8 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 2; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
- …