8 research outputs found

    The increasing threat to European forests from the invasive foliar pine pathogen, Lecanosticta acicola

    Get PDF
    European forests are threatened by increasing numbers of invasive pests and pathogens. Over the past century, Lecanosticta acicola, a foliar pathogen predominantly of Pinus spp., has expanded its range globally, and is increasing in impact. Lecanosticta acicola causes brown spot needle blight, resulting in premature defoliation, reduced growth, and mortality in some hosts. Originating from southern regions of North American, it devastated forests in the USA's southern states in the early twentieth century, and in 1942 was discovered in Spain.Derived from Euphresco project 'Brownspotrisk,' this study aimed to establish the current distribution of Lecanosticta species, and assess the risks of L. acicola to European forests. Pathogen reports from the literature, and new/ unpublished survey data were combined into an open-access geo-database (http://www.portaloff orestpathology.com), and used to visualise the pathogen's range, infer its climatic tolerance, and update its host range. Lecanosticta species have now been recorded in 44 countries, mostly in the northern hemisphere. The type species, L. acicola, has increased its range in recent years, and is present in 24 out of the 26 European countries where data were available. Other species of Lecanosticta are largely restricted to Mexico and Central America, and recently Colombia.The geo-database records demonstrate that L. acicola tolerates a wide range of climates across the northern hemisphere, and indicate its potential to colonise Pinus spp. forests across large swathes of the Europe. Pre-liminary analyses suggest L. acicola could affect 62% of global Pinus species area by the end of this century, under climate change predictions.Although its host range appears slightly narrower than the similar Dothistroma species, Lecanosticta species were recorded on 70 host taxa, mostly Pinus spp., but including, Cedrus and Picea spp. Twenty-three, including species of critical ecological, environmental and economic significance in Europe, are highly susceptible to L. acicola, suffering heavy defoliation and sometimes mortality. Variation in apparent susceptibility between reports could reflect variation between regions in the hosts' genetic make-up, but could also reflect the signif-icant variation in L. acicola populations and lineages found across Europe. This study served to highlight sig-nificant gaps in our understanding of the pathogen's behaviour.Lecanosticta acicola has recently been downgraded from an A1 quarantine pest to a regulated non quarantine pathogen, and is now widely distributed across Europe. With a need to consider disease management, this study also explored global BSNB strategies, and used Case Studies to summarise the tactics employed to date in Europe

    The health state of Ginkgo biloba L. in the presence of microfungi

    No full text
    The health state of Ginkgo biloba L. and damage caused by microscopic fungi were evaluated over the 2010–2011 time period, in selected localities of Slovakia and Czechia. The trees were assessed and put into two categories of health. Trees in very good (category 1) or good vitality and health with no or only light damage (category 2). A total of seven species of microscopic fungi were identified from samples taken from branches, fruits, and leaves. The following fungal genera were detected: Epicoccum, Fusarium, Alternaria, Phomopsis, Cylindrosporium, Phyllosticta, and Cladosporium. This present study is the first report about microscopic fungi determined on G. biloba for Slovakia

    Population structure of Cryphonectria parasitica in the Modry Kamen region

    No full text
    The European chestnut was evaluated for Chestnut blight disease in the Modrý Kameň region, in 2010. A total of 1321 trees and sprouts were selected. There were 140 healthy trees, without any symptoms of Cryphonectria parasitica infection. Nearly 90% of the evaluated trees and sprouts were diseased. The health condition index (IHC) on 11 experimental plots varied from 2.31 to 4.03. Every collected sample was identified as having C. parasitica. All isolates had the orange culture morphology; all isolates were virulent. Among the isolates, 8 vc types were detected. Vc type EU-2 was dominant, it comprised 37.14% of the tested isolates. Two other vc types: EU 1 and EU 12 were frequently detected

    Cause of withering of staghorn sumach [Rhus typhina L.] in selected localities in Slovakia

    No full text
    Health state of Rhus typhina was evaluated in 59 localities and 74 sites over the years 2001-2003 with scope (1) to identify the parasitic mycoflora of R. typhina in Slovakia and (2) to identify the occurrence of Cryphonectria parasitica, declared as an quarantine pest by the EPPO, besides the chestnut (Castanea sativa Mill.) and oak (Quercus sp.) also on R. typhina. The fungus Botryosphaeria ribis (Gross.) Dugg. (pycnidial state Dothiorella mali (Ell.) Ev) caused damage to the R. typhina. Damage to R. typhina caused by B. ribis was only recorded in 15 localities. Mean growth rate of hyphae of the fungus ranged from 25.7 to 48.3 mm after 96 hours of cultivation. The most appropriate medium for cultivation was 3% potato dextrose agar. The occurrence of the fungus Fusarium oxysporum Schlecht and mainly of quarantine fungus C. parasitica has not been recorded in the evaluated sites

    The quest for a globally comprehensible Russula language

    No full text
    Since 2007, the quality of Russula descriptions has improved and the use of molecular support for species delimitation and the number of published new species has increased. However, the description style is not consistent and has regional or author-specific patterns. Most recent publications still favour descriptions of spores compared to hymenium and pileipellis elements, and usually only the spore size is provided with statistical support. This study proposes standards for descriptions of the microscopic structure of Russula species (Russulaceae, Agaricomycetes). We present the description template, the template measurements table, the specific terminology and the essential chemical reagents. The proposed standards were tested by mycologists from 11 countries who met at the Russula Microscopy Workshop in Slovakia. Descriptions of 26 species from 9 countries and four continents were prepared, among them R. amarissima, R. castanopsidis, R. seperina and R. subtilis are re-described and 15 species are introduced as new: R. abietiphila, R. amerorecondita, R. aurantioflava, R. echidna, R. flavobrunnescens, R. fluvialis, R. fortunae, R. garyensis, R. gemmata, R. laevis, R. madrensis, R. olivaceohimalayensis, R. purpureogracilis, R. sancti-pauli and R. wielangtae. Seven descriptions for candidate new species are provided without a formal name assignment. Pairwise comparison of species described in this study with available similar descriptions of related species suggests that microscopic characters from all parts of the basidiomata can be equally important for species recognition and they deserve the same treatment including number of measurements and statistics. The majority of recent studies does not recognise differences between the pileus margin and centre, but more than one-third of the species described in this study show distinct differences between the pileus areas, emphasizing the importance to specify the origin of pileipellis observations. This study proved that there is frequently insufficient difference in the ITS barcode between closely related species and that it is necessary to use more genetic markers combined with ecological and geographical data

    Fungal Planet description sheets: 716–784

    No full text
    Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetopsina eucalypti on Eucalyptus leaf litter, Colletotrichum cobbittiense from Cordyline stricta x C. australis hybrid, Cyanodermella banksiae on Banksia ericifolia subsp. macrantha, Discosia macrozamiae on Macrozamia miquelii, Elsinoe banksiigena on Banksia marginata, Elsinoe elaeocarpi on Elaeocarpus sp., Elsinoe leucopogonis on Leucopogon sp., Helminthosporium livistonae on Livistona australis, Idriellomyces eucalypti (incl. Idriellomyces gen. nov.) on Eucalyptus obliqua, Lareunionomyces eucalypti on Eucalyptus sp., Myrotheciomyces corymbiae (incl. Myrotheciomyces gen. nov., Myrotheciomycetaceae fam. nov.), Neolauriomyces eucalypti (incl. Neolauriomyces gen. nov., Neolauriomycetaceae fam. nov.) on Eucalyptus sp., Nullicamyces eucalypti (incl. Nullicamyces gen. nov.) on Eucalyptus leaf litter, Oidiodendron eucalypti on Eucalyptus maidenii, Paracladophialophora cyperacearum (incl. Paracladophialophoraceae fam. nov.) and Periconia cyperacearum on leaves of Cyperaceae, Porodiplodia livistonae (incl. Porodiplodia gen. nov., Porodiplodiaceae fam. nov.) on Livistona australis, Sporidesmium melaleucae (incl. Sporidesmiales ord. nov.) on Melaleuca sp., Teratosphaeria sieberi on Eucalyptus sieberi, Thecaphora australiensis in capsules of a variant of Oxalis exilis. Brazil, Aspergillus serratalhadensis from soil, Diaporthe pseudo-inconspicua from Poincianella pyramidalis, Fomitiporella pertenuis on dead wood, Geastrum magnosporum on soil, Marquesius aquaticus (incl. Marquesius gen. nov.) from submerged decaying twig and leaves of unidentified plant, Mastigosporella pigmentata from leaves of Qualea parviflorae, Mucor souzae from soil, Mycocalia aquaphila on decaying wood from tidal detritus, Preussia citrullina as endophyte from leaves of Citrullus lanatus, Queiroziella brasiliensis (incl. Queiroziella gen. nov.) as epiphytic yeast on leaves of Portea leptantha, Quixadomyces cearensis (incl. Quixadomyces gen. nov.) on decaying bark, Xylophallus clavatus on rotten wood. Canada, Didymella cari on Carum carvi and Coriandrum sativum. Chile, Araucasphaeria foliorum (incl. Araucasphaeria gen. nov.) on Araucaria araucana, Aspergillus tumidus from soil, Lomentospora valparaisensis from soil. Colombia, Corynespora pseudocassiicola on Byrsonima sp., Eucalyptostroma eucalyptorum on Eucalyptus pellita, Neometulocladosporiella eucalypti (incl. Neometulocladosporiella gen. nov.) on Eucalyptus grandis x urophylla, Tracylla eucalypti (incl. Tracyllaceae fam. nov., Tracyllalales ord. nov.) on Eucalyptus urophylla. Cyprus, Gyromitra anthracobia (incl. Gyromitra subg. Pseudoverpa) on burned soil. Czech Republic, Lecanicillium restrictum from the surface of the wooden barrel, Lecanicillium testudineum from scales of Trachemys scripta elegans. Ecuador, Entoloma yanacolor and Saproamanita quitensis on soil. France, Lentithecium carbonneanum from submerged decorticated Populus branch. Hungary, Pleuromyces hungaricus (incl. Pleuromyces gen. nov.) from a large Fagus sylvatica log. Iran, Zymoseptoria crescenta on Aegilops triuncialis. Malaysia, Ochroconis musicola on Musa sp. Mexico, Cladosporium michoacanense from soil. New Zealand, Acrodontium metrosideri on Metrosideros excelsa, Polynema podocarpi on Podocarpus totara, Pseudoarthrographis phlogis (incl. Pseudoarthrographis gen. nov.) on Phlox subulata. Nigeria, Coprinopsis afrocinerea on soil. Pakistan, Russula mansehraensis on soil under Pinus roxburghii. Russia, Baorangia alexandri on soil in deciduous forests with Quercus mongolica. South Africa, Didymocyrtis brachylaenae on Brachylaena discolor. Spain, Alfaria dactylis from fruit of Phoenix dactylifera, Dothiora infuscans from a blackened wall, Exophiala nidicola from the nest of an unidentified bird, Matsushimaea monilioides from soil, Terfezia morenoi on soil. United Arab Emirates, Tirmania honrubiae on soil. USA, Arxotrichum wyomingense (incl. Arxotrichum gen. nov.) from soil, Hongkongmyces snookiorum from submerged detritus from a fresh water fen, Leratiomyces tesquorum from soil, Talaromyces tabacinus on leaves of Nicotiana tabacum. Vietnam, Afroboletus vietnamensis on soil in an evergreen tropical forest, Colletotrichum condaoense from Ipomoea pes-caprae. Morphological and culture characteristics along with DNA barcodes are provided.project of the Komarov Botanical Institute RAS 'Biodiversity and spatial structure of fungi and myxomycetes communities in natural and anthropogenic ecosystems' AAAA-A18-118031290108-6 ; Russian Science Foundation 14-50-00029 ; Universidade de Pernambuco ; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) ; Conselho Nacional do Desenvolvimento Cientifico e Tecnologico (CNPq) ; Fundacao de Amparo a Ciencia e Tecnologia de Pernambuco (FACEPE) ; Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) ; Instituto Chico Mendes de Conservacao da Biodiversidade (ICMBio) ; Parque Memorial Zumbi dos Palmares and Usina Caete - Grupo Carlos Lyra ; Secretaria de Educacion Superior, Ciencia, Tecnologia e Innovacion del Ecuador (SENESCYT) ; Arca de Noe Initiative ; Pontificia Universidad Catolica del Ecuador N13415 ; Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) ; Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT), Chile 11140562 ; Czechoslovak Microscopy Society ; Charles University Research Centre 204069 ; Czech Ministry of Health AZV 17-31269A ; Slovak American Foundation ; Slovak national project Vega 02/0018/18 ; Higher Education Commission (HEC), Islamabad, Pakistan ; Slovak national project APVV-15-0210 ; Ministry of Education, Youth and Sports of the Czech Republic LO1509 ; FEDER 19484/PI/14 ; Fundacion Seneca - Agencia de Ciencia y Tecnologia de la Region de Murcia, Spain 19484/PI/14 ; AEI CGL2016-78946-R ; FEDER, UE CGL2016-78946-R ; Commonwealth of Pennsylvania ; Pennsylvania Department of Conservation and Natural Resources ; Pennsylvania Bureau of State Parks ; Black Moshannon State Park ; Mycological Society of America ; University of Illinois Urbana-Champaign School of Integrative Biology ; Saskatchewan Ministry of Agriculture ; Western Grains Research Foundation ; Herb, Spice and Specialty Agriculture Association ; Saskatchewan Crop Insurance Corporation ; Nordesta AS

    Fungal Planet description sheets: 716-784

    No full text
    Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetopsina eucalypti on Eucalyptus leaf litter, Colletotrichum cobbittiense from Cordyline stricta x C. australis hybrid, Cyanodermella banksiae on Banksia ericifolia subsp. macrantha, Discosia macrozamiae on Macrozamia miquelii, Elsinoe banksiigena on Banksia marginata, Elsinoe elaeocarpi on Elaeocarpus sp., Elsinoe leucopogonis on Leucopogon sp., Helminthosporium livistonae on Livistona australis, Idriellomyces eucalypti (incl. Idriellomyces gen. nov.) on Eucalyptus obliqua, Lareunionomyces eucalypti on Eucalyptus sp., Myrotheciomyces corymbiae (incl. Myrotheciomyces gen. nov., Myrotheciomycetaceae fam. nov.), Neolauriomyces eucalypti (incl. Neolauriomyces gen. nov., Neolauriomycetaceae fam. nov.) on Eucalyptus sp., Nullicamyces eucalypti (incl. Nullicamyces gen. nov.) on Eucalyptus leaf litter, Oidiodendron eucalypti on Eucalyptus maidenii, Paracladophialophora cyperacearum (incl. Paracladophialophoraceae fam. nov.) and Periconia cyperacearum on leaves of Cyperaceae, Porodiplodia livistonae (incl. Porodiplodia gen. nov., Porodiplodiaceae fam. nov.) on Livistona australis, Sporidesmium melaleucae (incl. Sporidesmiales ord. nov.) on Melaleuca sp., Teratosphaeria sieberi on Eucalyptus sieberi, Thecaphora australiensis in capsules of a variant of Oxalis exilis. Brazil, Aspergillus serratalhadensis from soil, Diaporthe pseudo-inconspicua from Poincianella pyramidalis, Fomitiporella pertenuis on dead wood, Geastrum magnosporum on soil, Marquesius aquaticus (incl. Marquesius gen. nov.) from submerged decaying twig and leaves of unidentified plant, Mastigosporella pigmentata from leaves of Qualea parviflorae, Mucor souzae from soil, Mycocalia aquaphila on decaying wood from tidal detritus, Preussia citrullina as endophyte from leaves of Citrullus lanatus, Queiroziella brasiliensis (incl. Queiroziella gen. nov.) as epiphytic yeast on leaves of Portea leptantha, Quixadomyces cearensis (incl. Quixadomyces gen. nov.) on decaying bark, Xylophallus clavatus on rotten wood. Canada, Didymella cari on Carum carvi and Coriandrum sativum. Chile, Araucasphaeria foliorum (incl. Araucasphaeria gen. nov.) on Araucaria araucana, Aspergillus tumidus from soil, Lomentospora valparaisensis from soil. Colombia, Corynespora pseudocassiicola on Byrsonima sp., Eucalyptostroma eucalyptorum on Eucalyptus pellita, Neometulocladosporiella eucalypti (incl. Neometulocladosporiella gen. nov.) on Eucalyptus grandis x urophylla, Tracylla eucalypti (incl. Tracyllaceae fam. nov., Tracyllalales ord. nov.) on Eucalyptus urophylla. Cyprus, Gyromitra anthracobia (incl. Gyromitra subg. Pseudoverpa) on burned soil. Czech Republic, Lecanicillium restrictum from the surface of the wooden barrel, Lecanicillium testudineum from scales of Trachemys scripta elegans. Ecuador, Entoloma yanacolor and Saproamanita quitensis on soil. France, Lentithecium carbonneanum from submerged decorticated Populus branch. Hungary, Pleuromyces hungaricus (incl. Pleuromyces gen. nov.) from a large Fagus sylvatica log. Iran, Zymoseptoria crescenta on Aegilops triuncialis. Malaysia, Ochroconis musicola on Musa sp. Mexico, Cladosporium michoacanense from soil. New Zealand, Acrodontium metrosideri on Metrosideros excelsa, Polynema podocarpi on Podocarpus totara, Pseudoarthrographis phlogis (incl. Pseudoarthrographis gen. nov.) on Phlox subulata. Nigeria, Coprinopsis afrocinerea on soil. Pakistan, Russula mansehraensis on soil under Pinus roxburghii. Russia, Baorangia alexandri on soil in deciduous forests with Quercus mongolica. South Africa, Didymocyrtis brachylaenae on Brachylaena discolor. Spain, Alfaria dactylis from fruit of Phoenix dactylifera, Dothiora infuscans from a blackened wall, Exophiala nidicola from the nest of an unidentified bird, Matsushimaea monilioides from soil, Terfezia morenoi on soil. United Arab Emirates, Tirmania honrubiae on soil. USA, Arxotrichum wyomingense (incl. Arxotrichum gen. nov.) from soil, Hongkongmyces snookiorum from submerged detritus from a fresh water fen, Leratiomyces tesquorum from soil, Talaromyces tabacinus on leaves of Nicotiana tabacum. Vietnam, Afroboletus vietnamensis on soil in an evergreen tropical forest, Colletotrichum condaoense from Ipomoea pes-caprae. Morphological and culture characteristics along with DNA barcodes are provided
    corecore