1,090 research outputs found
The Effect of Magnetic Variability on Stellar Angular Momentum Loss II: The Sun, 61 Cygni A, Eridani, Bootis A and Bootis A
The magnetic fields of low-mass stars are observed to be variable on decadal
timescales, ranging in behaviour from cyclic to stochastic. The changing
strength and geometry of the magnetic field should modify the efficiency of
angular momentum loss by stellar winds, but this has not been well quantified.
In Finley et al. (2018) we investigated the variability of the Sun, and
calculated the time-varying angular momentum loss rate in the solar wind. In
this work, we focus on four low-mass stars that have all had their surface
magnetic fields mapped for multiple epochs. Using mass loss rates determined
from astrospheric Lyman- absorption, in conjunction with scaling
relations from the MHD simulations of Finley & Matt (2018), we calculate the
torque applied to each star by their magnetised stellar winds. The variability
of the braking torque can be significant. For example, the largest torque for
Eri is twice its decadal averaged value. This variation is
comparable to that observed in the solar wind, when sparsely sampled. On
average, the torques in our sample range from 0.5-1.5 times their average
value. We compare these results to the torques of Matt et al. (2015), which use
observed stellar rotation rates to infer the long-time averaged torque on
stars. We find that our stellar wind torques are systematically lower than the
long-time average values, by a factor of ~3-30. Stellar wind variability
appears unable to resolve this discrepancy, implying that there remain some
problems with observed wind parameters, stellar wind models, or the long-term
evolution models, which have yet to be understood.Comment: 15 pages + 8 figures, accepted for publication to Ap
On the static length of relaxation and the origin of dynamic heterogeneity in fragile glass-forming liquids
The most puzzling aspect of the glass transition observed in laboratory is an
apparent decoupling of dynamics from structure. In this paper we recount the
implication of various theories of glass transition for the static correlation
length in an attempt to reconcile the dynamic and static lengths associate with
the glass problem. We argue that a more recent characterization of the static
relaxation length based on the bond ordering scenario, as the typical length
over which the energy fluctuations are correlated, is more consistent with, and
indeed in perfect agreement with the typical linear size of the dynamically
heterogeneous domains observed in deeply supercooled liquids. The correlated
relaxation of bonds in terms of energy is therefore identified as the physical
origin of the observed dynamic heterogeneity.Comment: 6 pages, 1 figur
- …
