2 research outputs found

    First Precambrian palaeomagnetic data from the Mawson Craton (East Antarctica) and tectonic implications

    Get PDF
    A pilot palaeomagnetic study was conducted on the recently dated with in situ SHRIMP U-Pb method at 1134 ± 9 Ma (U-Pb, zircon and baddeleyite) Bunger Hills dykes of the Mawson Craton (East Antarctica). Of the six dykes sampled, three revealed meaningful results providing the first well-dated Mesoproterozoic palaeopole at 40.5°S, 150.1°E (A95 = 20°) for the Mawson Craton. Discordance between this new pole and two roughly coeval poles from Dronning Maud Land and Coats Land (East Antarctica) demonstrates that these two terranes were not rigidly connected to the Mawson Craton ca. 1134 Ma. Comparison between the new pole and that of the broadly coeval Lakeview dolerite from the North Australian Craton supports the putative ~40° late Neoproterozoic relative rotation between the North Australian Craton and the combined South and West Australian cratons. A mean ca. 1134 Ma pole for the Proto-Australia Craton is calculated by combining our new pole and that of the Lakeview dolerite after restoring the 40° intracontinental rotation. A comparison of this mean pole with the roughly coeval Abitibi dykes pole from Laurentia confirms that the SWEAT reconstruction of Australia and Laurentia was not viable for ca. 1134 Ma

    Paleomagnetic constraints on the duration of the Australia-Laurentia connection in the core of the Nuna supercontinent

    Get PDF
    The Australia-Laurentia connection in the Paleoproterozoic to Mesoproterozoic supercontinent Nuna is thought to have initiated by ca. 1.6 Ga when both continents were locked in a proto-SWEAT (southwestern U.S.–East Antarctic) configuration. However, the longevity of that configuration is poorly constrained. Here, we present a new high-quality paleomagnetic pole from the ca. 1.3 Ga Derim Derim sills of northern Australia that suggests Australia and Laurentia were in the same configuration at that time. This new paleopole also supports a connection between Australia and North China and, in conjunction with previously reported data from all continents, indicates that the breakup of Nuna largely occurred between ca. 1.3 and 1.2 Ga.The Australia-Laurentia connection in the Paleoproterozoic to Mesoproterozoic supercontinent Nuna is thought to have initiated by ca. 1.6 Ga when both continents were locked in a proto-SWEAT (southwestern U.S.-East Antarctic) configuration. However, the longevity of that configuration is poorly constrained. Here, we present a new high-quality paleomagnetic pole from the ca. 1.3 Ga Derim Derim sills of northern Australia that suggests Australia and Laurentia were in the same configuration at that time. This new paleopole also supports a connection between Australia and North China and, in conjunction with previously reported data from all continents, indicates that the breakup of Nuna largely occurred between ca. 1.3 and 1.2 Ga.Peer reviewe
    corecore