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ABSTRACT
The Australia-Laurentia connection in the Paleoproterozoic to Mesoproterozoic supercon-

tinent Nuna is thought to have initiated by ca. 1.6 Ga when both continents were locked in a 
proto-SWEAT (southwestern U.S.–East Antarctic) configuration. However, the longevity of 
that configuration is poorly constrained. Here, we present a new high-quality paleomagnetic 
pole from the ca. 1.3 Ga Derim Derim sills of northern Australia that suggests Australia and 
Laurentia were in the same configuration at that time. This new paleopole also supports a 
connection between Australia and North China and, in conjunction with previously reported 
data from all continents, indicates that the breakup of Nuna largely occurred between ca. 
1.3 and 1.2 Ga.

INTRODUCTION
The hypothesized connection between 

western Laurentia (North America) and east-
ern proto-Australia (Australia-Antarctica shield, 
hereafter referred to as Australia), initially pro-
posed for the latest Paleoproterozoic to Neopro-
terozoic, is one of the most intensively studied 
connections in the Proterozoic supercontinents 
Rodinia and Nuna (Dalziel, 1991; Moores, 
1991; Idnurm and Giddings, 1995). In super-
continent Nuna (also known as Columbia), it is 
thought that Australia and Laurentia were con-
nected throughout much of the Mesoproterozoic 
(Zhang et al., 2012; Pisarevsky et al., 2014a). 
However, critical uncertainties exist regarding 

the configuration and longevity due to a lack of 
high-quality paleomagnetic data and uncertain 
geological correlations (e.g., Morrissey et al., 
2019).

Zhao et  al. (2002) proposed that Nuna 
assembled between ca. 2.1 and 1.8 Ga during a 
period of global-scale orogenesis and broke up 
between ca. 1.6 and 1.2 Ga, placing Australia in 
a SWEAT (southwestern U.S.–East Antarctic) 
configuration (Moores, 1991) with respect to 
Laurentia. Based on paleomagnetic data, the 
original SWEAT fit was refined to a “proto-
SWEAT” configuration for the 1.74–1.59 Ga 
interval, with Australia located further north 
in a Laurentian reference frame (Payne et al., 
2009). Reinvestigation of the available paleo-
magnetic data for roughly the same time inter-
val, including new data for ca. 1.8 Ga (Kirscher 

et al., 2019), suggests that the original proto-
SWEAT connection is valid at ca. 1.8 Ga, but 
a reorganization between ca. 1.7 and 1.6 Ga 
would have led to a slightly modified (proto-
SWEAT) configuration. Given the inherent 
paleomagnetic uncertainties, the reorganiza-
tion between Australia and Laurentia in Nuna 
could reflect either (1) a connection between 
the continents at ca. 1.8 Ga, followed by dex-
tral shearing or a divergence-convergence 
motion that led to separation and reassembly 
at ca. 1.6 Ga (Betts et al., 2016); or (2) that a 
small ocean existed between the continents at 
1.8 Ga that closed by ca. 1.6 Ga (Betts et al., 
2008; Pisarevsky et al., 2014a; Nordsvan et al., 
2018; Kirscher et al., 2019). Nevertheless, this 
reorganization indicates that assembly of Nuna 
was a protracted process and took place until at 
least 1.6 Ga, which is supported by concurrent 
orogenesis in eastern Australian and western 
Laurentia (Pourteau et al., 2018).

Although the refined proto-SWEAT con-
figuration between Australia and Laurentia is 
supported by ca. 1.58 Ga paleomagnetic data, 
the breakup age is poorly constrained (Evans 
and Mitchell, 2011; Meert and Santosh, 2017). 
The formation of ca. 1.5–1.2 Ga basins along 
the western margin of Laurentia has been used 
to argue that Australia rifted from  Laurentia 
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 during this interval (Zhao et al., 2004).  However, 
 detrital zircon populations in many of the Lau-
rentian sequences are thought to have been 
sourced from Australia (Link et  al., 2007; 
Medig et al., 2014), suggesting that the basins 
were likely intracontinental (Davidson, 2008). 
Paleomagnetic data indicate that Australia and 
Laurentia were together at ca. 1.58 Ga (Betts 
et al., 2016) and that the breakup was achieved 
by ca. 1.2 Ga (Pisarevsky et al., 2014b). Here, 
we report a new high-quality paleomagnetic pole 
from the ca. 1.32 Ga Derim Derim sills of Aus-
tralia and discuss the configuration and breakup 
of the Australia-Laurentia connection and the 
implications for the Nuna supercontinent.

DERIM DERIM SILLS
The Derim Derim sills intrude the ca. 

1.5–1.35 Ga Roper Group of the McArthur 
Basin in northern Australia (Fig. 1) and are 
gently folded with tilts of <5° (Abbott et al., 
2001). Thermal modeling of Mesoproterozoic 
natural-gas occurrences reveals that the Roper 
Group probably never reached temperatures 
>∼300 °C (Hoffman, 2016). U-Pb geochro-
nology for the Derim Derim sills yields ages 
of 1327.5 ± 0.6 Ma (isotope dilution–ther-
mal ionization mass spectrometry [ID-TIMS] 
on baddeleyite; Bodorkos et al., 2020) and 
1312.9 ± 0.7 Ma (ID-TIMS on baddeley-
ite; Yang et  al., 2020), both coeval (within 

 uncertainty) with the 1325 ± 36 Ma (2σ) Gal-
iwinku dikes in northern Australia (Bodorkos 
et al., 2020). Aeromagnetic expression of the 
poorly exposed Galiwinku dikes reveals a 
radial pattern that projects to where the Derim 
Derim sills intrude the McArthur Basin, fur-
ther indicating that both sets of intrusions are 
part of the same large igneous province (LIP) 
(Zhang et al., 2017).

PALEOMAGNETIC RESULTS
We collected 170 oriented block samples 

from nine sites of the Derim Derim sills, where 
each site corresponds to one sill, in two  outcrop 
areas (Fig. 1; Table S1 in the  Supplemental 
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Material1). One site of the Derim Derim sills 
was obtained from a subvertical drill core 
(Altree-2, drilled by Pacific Oil and Gas Pty Ltd.; 
15°55′28.698′′S, 133°47′7.980′′E), where sam-
ples of the sedimentary rocks from the overlying 
Corcoran Formation were also collected for a 
baked-contact test (Table S4). One site of the 
Galiwinku dike was also obtained from outcrop. 
For all samples, measurements proceeded with 
anisotropy of magnetic susceptibility (AMS), 
followed by natural remanent magnetization, 
then demagnetization using thermal (80% of all 
specimens) or alternating-field (AF; 20% of all 
specimens) treatments. Standard paleomagnetic 
laboratory and analytical procedures were used 
(see the Supplemental Material). AMS linea-
tions range between northwest and northeast and 
define an average flow direction consistent with 
the orientation of the coeval Galiwinku dikes, 
supporting the hypothesis of a plume center 
located north-northeast of Australia (Fig. 1).

Rock magnetic studies of the Derim Derim 
sill samples indicate magnetite and/or Ti-poor 
titanomagnetite as the main magnetic phase 
(Fig. 1; Fig. S3 in the Supplemental Material). 
Prominent single-domain and/or pseudo-single-
domain signals in most of the samples indicate 
that the sills carry stable remanence. Baked and 
unbaked sediments in drill core show slightly 
different magnetic mineralogy (Fig. S5). The 
degree of AMS is generally low (<1.06; Table 
S2; Fig. S1), typical of mafic intrusions (Ferré, 
2002), and indicates the absence of any signifi-
cant deformation after the emplacement of the 
sills. The Galiwinku dike is characterized by a 
different magnetic mineralogy, showing a prom-
inent low-temperature phase potentially related 
to maghemite (Fig. S3i) and much weaker mag-
netic signals (Figs. S2e and S2f).

Thermal and AF demagnetization of the Derim 
Derim sill samples yield well-defined and compa-
rable directional behavior leading to high-stability 
characteristic remanent magnetization (ChRM) 
directions that are generally well clustered (Fig. 1; 
Figs. S2 and S4). The ChRM directions are of 
one polarity except one site yielding an antipo-
dal direction. Due to the lack of chilled margin 
contacts in outcrop, a baked-contact test was car-
ried out in a drill core where chilled margins are 
exceptionally preserved. The azimuth of the drill 
core is unknown, so the drill-core sites cannot be 
used in the mean direction calculation. Nonethe-
less, the drill core has an azimuthally consistent 
reference line, so all drill core samples can be ori-
ented relative to each other, which is sufficient for 

conducting the test. Two sedimentary host-rock 
samples near the contact with the Derim Derim 
sill (3 and 8 cm above) yield similar directions to 
the sill (Fig. 1G) and also have similar inclinations 
to those obtained from Derim Derim outcrops, 
indicating that the sill sites within the drill core 
likely retain a primary magnetization direction. 
Another three samples from the sedimentary host 
rock of the same core but ∼30 m stratigraphically 
above the contact show a well-defined ChRM with 
a completely different direction from that of both 
the sill and the baked samples (Fig. 1G), consti-
tuting a positive baked contact test, i.e., the sill 
ChRM was acquired at the time of cooling.

Combining eight site-mean directions of 
Derim Derim sill outcrops yields a mean ChRM 
direction of declination 183.6°, inclination 46.2°, 
and α95 (95% confidence for spherical distribu-
tion) = 13.7° for the 1.32 Ga Derim Derim sills, 
with a corresponding pole position at 76.5°S, 
120.2°E, and A95 = 15.0° (Table S3). The Gali-
winku dike site-mean direction was not included 
due to its large confidence interval (Table S3) 
and rock magnetic and directional differences. 
The Derim Derim sills pole  demonstrably 
 represents a primary thermoremanent magneti-
zation, and can thus be used for paleogeographic 
reconstructions. This interpretation is based on: 
(1) the paleomagnetic results from the drill core, 
which constitute a positive baked contact test; 

(2) rock magnetic studies of the drill core, which 
reveal the presence versus absence of pyrrhotite 
in the baked versus unbaked zones of the sedi-
mentary host rock, which indicates metamorphic 
changes in the mineral composition of the host 
rock due to baking (Fig. S5); (3) starkly con-
trasting paleomagnetic directions of the Derim 
Derim sills compared to the next-younger unit 
with paleomagnetism, the ca. 500 Ma Antrim 
Plateau Volcanics (McElbinny and Luck, 1970); 
(4) geomagnetic secular variation, which can 
be assumed to be sufficiently averaged given 
the number of sampled cooling units and a 
reasonable estimate of paleosecular variation 
(S [angular dispersion of poles] value of 21.51; 
see the Supplemental Material) for the paleo-
latitude; and (5) the presence of antipodal site-
mean directions that overlap within uncertain-
ties after reversing the polarity of one site (see 
the Supplemental Material for details; Fig. S4).

AUSTRALIA-LAURENTIA 
CONNECTION

The paleomagnetic inclination of the Derim 
Derim sills indicates that Australia was located 
at a paleolatitude of ∼30° at ca. 1.3 Ga. Com-
paring these new data with coeval poles from 
 Laurentia (Murthy, 1978) using the modified 
Australia-Laurentia fit from 1.65 to 1.58 Ga 
(Euler  rotation of Kirscher et al. [2019]; Fig. 2; 

1Supplemental Material. Materials and methods, 
five supplemental figures, seven supplemental tables, 
and references providing further detail on paleomagnetic 
and rock-magnetic results, sampling descriptions, 
performed analysis, and reconstruction data. Please 
visit https://doi .org/10.1130/GEOL.S.12935030 to 
access the supplemental material, and contact editing@
geosociety.org with any questions.
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Table S7)  indicates the two continents were in 
a similar configuration at 1.3 Ga. We propose 
that the Derim Derim sills pole, showing that 
Australia and Laurentia were in the same proto-
SWEAT fit at ca. 1.3 Ga as they were at ca. 
1.6 Ga, strongly suggests that this configuration 
was maintained throughout that time interval. 
Although published 1.6–1.3 Ga paleomagnetic 
poles from Australia and Laurentia permit this 
proto-SWEAT configuration during this inter-
val, comparative data are not always coeval, and 
some are of low quality and/or have significant 
age uncertainties (Table S5). This new pole, 
being coeval with poles in Laurentia and show-
ing the same configuration at ca. 1.6–1.3 Ga, 
provides robust support for the proto-SWEAT 
interpretation at ca. 1.58 Ga and, by implica-
tion, the correlation of the ca. 1.6 Ga Racklan 
and Isan orogenies in northwestern Canada and 
northeastern Australia, respectively (Thorkel-
son et al., 2001; Nordsvan et al., 2018; Pour-
teau et al., 2018).

Collectively, these data suggest that fol-
lowing their amalgamation at ca. 1.6 Ga, 
 Australia and Laurentia were contiguous in the 
same proto-SWEAT configuration for at least 
∼300 m.y. This interpretation does not support 
the correlation of ca. 1.5–1.4 Ga A-type gran-
ites in northern South Australia and Mexico 
(Morrissey et  al., 2019), but instead agrees 
with the interpretation of northern Australian 
(e.g., Mount Isa inlier)–derived detrital zircon 
in the ca. 1.5–1.4 Ga lower part of the Fif-
teenmile Group (PR1 unit; Yukon, Canada) of 
northwestern Laurentia (Medig et al., 2014). 
The divergence of ca. 1.2 Ga paleopoles from 
Australia and Laurentia indicate that the conti-
nents were separated by that time (Pisarevsky 
et al., 2014b), constraining the breakup age of 
the proto-SWEAT connection at ca. 1.3–1.2 Ga.

AUSTRALIA–NORTH CHINA 
CONNECTION

These new data also support the connec-
tion between northern Australia and the North 
China craton, as proposed based on the correla-
tion of paleomagnetic poles (Zhang et al., 2012; 
Pisarevsky et al., 2014a), ca. 1.4 Ga  oceanic 
euxinic events (Mitchell et al., 2020) and ca. 
1.3 Ga LIPs (Zhang et al., 2017). Our proposed 
configuration of Australia and the North China 
craton (Fig. 3) is similar to that of Zhang et al. 
(2017) with the modification that the North 
China craton is rotated slightly clockwise rela-
tive to Australia. This modified configuration is 
more compatible with the paleomagnetic data 
from both continents (Fig. 2; Table S5), while 
inferring a plume center related to the Gali-
winku-Datong dike swarm to the present-day 
north of Australia (Zhang et al., 2017) (Fig. 1). 
The exact amalgamation age between Austra-
lia and the North China craton is still unclear 
due to a lack of paleomagnetic data (particu-

larly from the North China craton; Wang et al., 
2019). Lithostratigraphic similarities between 
the McArthur Basin of Australia and Yanshan 
Basin of north China (Zhang et al., 2018; Col-
lins et al., 2019; Wang et al., 2019) suggest 
that the two continents were neighbors from at 
least ca. 1.8 to 1.3 Ga, and detrital zircon in 
<1.2 Ga North China craton sedimentary rocks 
indicates they might have been together longer 
(Yang et al., 2019). However, in contrast, new 
ca. 1.2 Ga paleomagnetic data from North China 
indicate that Australia and the North China cra-
ton had started to break apart at this time (Ding 
et al., 2020).

IMPLICATIONS FOR 
SUPERCONTINENT NUNA

The core of Nuna, traditionally including 
Laurentia, Baltica, and Siberia, is thought 
to have been assembled by ca. 1.78 Ga (Wu 
et al., 2005). Paleomagnetic poles from these 
three core continents support the configuration 
in Figure 3 from ca. 1.7 Ga, although other 
arrangements have been proposed (Pisarevsky 

et al., 2014a). If the final collision between 
Australia and Laurentia occurred at 1.6 Ga, 
then the previously formed core of Nuna might 
represent a precursor large building block of the 
Nuna supercontinent, just like Gondwana was to 
Pangea (Nance and Murphy, 2019).

Our new paleomagnetic pole shows that the 
ca. 1.6 Ga Nuna configuration of Australia and 
Laurentia (Pisarevsky et al., 2014a ; Kirscher 
et al., 2019) likely remained until ca. 1.3 Ga, 
implying that Australia was a stable part of the 
Nuna core. While the connection between Lau-
rentia and Siberia might have persisted longer, 
paleomagnetic data suggest that significant core 
components of Nuna were disassembled from 
1.3 to 1.2 Ga (Fig. 2C) (e.g., Cawood et al., 
2010; Pisarevsky et  al., 2014b; Ding et  al., 
2020). Therefore, the ∼300 m.y. duration of a 
stable Nuna core between 1.6 and 1.3 Ga, during 
which the supercontinent exhibited a slow coun-
terclockwise tectonic rotation (Fig. 2), is strongly 
supported by paleomagnetic data from several 
continents and implies that Nuna was the longest 
lived among the three known supercontinents.
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