59 research outputs found
First-in-Class Mitogen-Activated Protein Kinase p38α: MAPK-Activated Protein Kinase-2 (MK2) Dual Signal Modulator with Anti-inflammatory and Endothelial-stabilizing Properties.
We previously identified a small molecule, UM101, predicted to bind to the substrate-binding groove of p38aMitogen-activated Protein Kinase (MAPK) near the binding site of its proinflammatory substrate, MAPK-activated protein kinase (MK2). UM101 exhibited anti-inflammatory, endothelial-stabilizing, and lung-protective effects. To overcome its limited aqueous solubility and p38a binding affinity, we designed an analog of UM101, GEn-1124, with improved aqueous solubility, stability, and p38a binding affinity. Compared with UM101, GEn-1124 has 18-fold greater p38a-binding affinity as measured by Surface Plasmon Resonance (SPR), 11-fold greater aqueous solubility, enhanced barrier-stabilizing activity in thrombin-stimulated human pulmonary artery endothelial cells (hPAEC) in vitro, and greater lung protection in vivo GEn-1124 improved survival from 10% to 40% in murine acute lung injury (ALI) induced by combined exposure to intratracheal bacterial endotoxin lipopolysaccharide (LPS) instillation and febrile-range hyperthermia (FRH) and from 0% to 50% in a mouse influenza pneumonia model. Gene expression analysis by RNASeq in TNFa-treated hPAEC showed that the gene-modifying effects of GEn-1124 were much more restricted to TNFa-inducible genes than the catalytic site p38 inhibitor, SB203580. Gene expression pathway analysis, confocal immunofluorescence analysis of p38aand MK2 subcellular trafficking, and SPR analysis of phosphorylated p38a:MK2 binding affinity supports a novel mechanism of action. GEn-1124 destabilizes the activated p38a:MK2 complex, dissociates nuclear export of MK2 and p38a, thereby promoting intranuclear retention and enhanced intranuclear signaling by phosphorylated p38a retention, and accelerated inactivation of p38-free cytosolic MK2 by unopposed phosphatases. Significance Statement We describe an analog of our first-in-class small molecule modulator of p38a/MK2 signaling targeted to a pocket near the ED substrate binding domain of p38a, which destabilizes the p38a:MK2 complex without blocking p38 catalytic activity or ablating downstream signaling. The result is a rebalancing of downstream pro- and anti-inflammatory signaling, yielding anti-inflammatory, endothelial-stabilizing, and lung-protective effects with therapeutic potential in ARDS
The impact of the European Association of Endoscopic Surgery research grant scheme—a mixed qualitative quantitative methodology study protocol
BackgroundThe European Association of Endoscopic Surgery (EAES) is a surgical society who promotes the development and expansion of minimally invasive surgery to surgeons and surgical trainees. It does so through its activities in education, training, and research. The EAES research committee aims to promote the highest quality clinical research in endoscopic and minimally invasive surgery. They have provided grant funding since 2009 in education, surgery, and basic science. Despite the success and longevity of the scheme, the academic and non-academic impact of the research funding scheme has not been evaluated.AimsThe primary aim of this project is to assess the short, long term academic and real world impact of the EAES funding scheme. The secondary aims are to identify barriers and facilitators for achieving good impact.MethodsThis will be a mixed qualitative and quantitative study. Semi-structured interviews will be performed with previous grant recipients. The questions for the interviews will be selected after a consensus is achieved amongst the members of the steering committee of this project. The responses will be transcribed and thematic analysis will be applied. The results of the thematic analysis will be used to populate a questionnaire which will be disseminated to grant recipients. This study is kindly funded by the EAES.DiscussionThe first question this project is expected to answer is whether the EAES research funding scheme had a significant positive impact on research output, career progression but also non-academic output such as change in clinical guidelines, healthcare quality and cost-effectiveness improvement. This project however is also expected to identify facilitators and barriers to successful completion of projects and to achieving high impact. This will inform EAES and the rest of the surgical and academic communities as to how clinicians would like to be supported when conducting research. There should also be a positive and decisive change towards removing factors that hinder the timely and successful completion of projects
Innovation in gastrointestinal surgery: the evolution of minimally invasive surgery—a narrative review
Background
Minimally invasive (MI) surgery has revolutionised surgery, becoming the standard of care in many countries around the globe. Observed benefits over traditional open surgery include reduced pain, shorter hospital stay, and decreased recovery time. Gastrointestinal surgery in particular was an early adaptor to both laparoscopic and robotic surgery. Within this review, we provide a comprehensive overview of the evolution of minimally invasive gastrointestinal surgery and a critical outlook on the evidence surrounding its effectiveness and safety.
Methods
A literature review was conducted to identify relevant articles for the topic of this review. The literature search was performed using Medical Subject Heading terms on PubMed. The methodology for evidence synthesis was in line with the four steps for narrative reviews outlined in current literature. The key words used were minimally invasive, robotic, laparoscopic colorectal, colon, rectal surgery.
Conclusion
The introduction of minimally surgery has revolutionised patient care. Despite the evidence supporting this technique in gastrointestinal surgery, several controversies remain. Here we discuss some of them; the lack of high level evidence regarding the oncological outcomes of TaTME and lack of supporting evidence for robotic colorectalrectal surgery and upper GI surgery. These controversies open pathways for future research opportunities with RCTs focusing on comparing robotic to laparoscopic with different primary outcomes including ergonomics and surgeon comfort
Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
Understanding universal aspects of quantum dynamics is an unresolved problem
in statistical mechanics. In particular, the spin dynamics of the 1D Heisenberg
model were conjectured to belong to the Kardar-Parisi-Zhang (KPZ) universality
class based on the scaling of the infinite-temperature spin-spin correlation
function. In a chain of 46 superconducting qubits, we study the probability
distribution, , of the magnetization transferred across the
chain's center. The first two moments of show superdiffusive
behavior, a hallmark of KPZ universality. However, the third and fourth moments
rule out the KPZ conjecture and allow for evaluating other theories. Our
results highlight the importance of studying higher moments in determining
dynamic universality classes and provide key insights into universal behavior
in quantum systems
Suppressing quantum errors by scaling a surface code logical qubit
Practical quantum computing will require error rates that are well below what
is achievable with physical qubits. Quantum error correction offers a path to
algorithmically-relevant error rates by encoding logical qubits within many
physical qubits, where increasing the number of physical qubits enhances
protection against physical errors. However, introducing more qubits also
increases the number of error sources, so the density of errors must be
sufficiently low in order for logical performance to improve with increasing
code size. Here, we report the measurement of logical qubit performance scaling
across multiple code sizes, and demonstrate that our system of superconducting
qubits has sufficient performance to overcome the additional errors from
increasing qubit number. We find our distance-5 surface code logical qubit
modestly outperforms an ensemble of distance-3 logical qubits on average, both
in terms of logical error probability over 25 cycles and logical error per
cycle ( compared to ). To investigate
damaging, low-probability error sources, we run a distance-25 repetition code
and observe a logical error per round floor set by a single
high-energy event ( when excluding this event). We are able
to accurately model our experiment, and from this model we can extract error
budgets that highlight the biggest challenges for future systems. These results
mark the first experimental demonstration where quantum error correction begins
to improve performance with increasing qubit number, illuminating the path to
reaching the logical error rates required for computation.Comment: Main text: 6 pages, 4 figures. v2: Update author list, references,
Fig. S12, Table I
Measurement-induced entanglement and teleportation on a noisy quantum processor
Measurement has a special role in quantum theory: by collapsing the
wavefunction it can enable phenomena such as teleportation and thereby alter
the "arrow of time" that constrains unitary evolution. When integrated in
many-body dynamics, measurements can lead to emergent patterns of quantum
information in space-time that go beyond established paradigms for
characterizing phases, either in or out of equilibrium. On present-day NISQ
processors, the experimental realization of this physics is challenging due to
noise, hardware limitations, and the stochastic nature of quantum measurement.
Here we address each of these experimental challenges and investigate
measurement-induced quantum information phases on up to 70 superconducting
qubits. By leveraging the interchangeability of space and time, we use a
duality mapping, to avoid mid-circuit measurement and access different
manifestations of the underlying phases -- from entanglement scaling to
measurement-induced teleportation -- in a unified way. We obtain finite-size
signatures of a phase transition with a decoding protocol that correlates the
experimental measurement record with classical simulation data. The phases
display sharply different sensitivity to noise, which we exploit to turn an
inherent hardware limitation into a useful diagnostic. Our work demonstrates an
approach to realize measurement-induced physics at scales that are at the
limits of current NISQ processors
Non-Abelian braiding of graph vertices in a superconducting processor
Indistinguishability of particles is a fundamental principle of quantum
mechanics. For all elementary and quasiparticles observed to date - including
fermions, bosons, and Abelian anyons - this principle guarantees that the
braiding of identical particles leaves the system unchanged. However, in two
spatial dimensions, an intriguing possibility exists: braiding of non-Abelian
anyons causes rotations in a space of topologically degenerate wavefunctions.
Hence, it can change the observables of the system without violating the
principle of indistinguishability. Despite the well developed mathematical
description of non-Abelian anyons and numerous theoretical proposals, the
experimental observation of their exchange statistics has remained elusive for
decades. Controllable many-body quantum states generated on quantum processors
offer another path for exploring these fundamental phenomena. While efforts on
conventional solid-state platforms typically involve Hamiltonian dynamics of
quasi-particles, superconducting quantum processors allow for directly
manipulating the many-body wavefunction via unitary gates. Building on
predictions that stabilizer codes can host projective non-Abelian Ising anyons,
we implement a generalized stabilizer code and unitary protocol to create and
braid them. This allows us to experimentally verify the fusion rules of the
anyons and braid them to realize their statistics. We then study the prospect
of employing the anyons for quantum computation and utilize braiding to create
an entangled state of anyons encoding three logical qubits. Our work provides
new insights about non-Abelian braiding and - through the future inclusion of
error correction to achieve topological protection - could open a path toward
fault-tolerant quantum computing
- …