3,941 research outputs found

    Defining the Nuanced Nature of Redox Biology in Post-Traumatic Stress Disorder

    Get PDF
    Post-traumatic stress disorder (PTSD) is a mental health disorder that arises after experiencing or witnessing a traumatic event. Despite affecting around 7% of the population, there are currently no definitive biological signatures or biomarkers used in the diagnosis of PTSD. Thus, the search for clinically relevant and reproducible biomarkers has been a major focus of the field. With significant advances of large-scale multi-omic studies that include genomic, proteomic, and metabolomic data, promising findings have been made, but the field still has fallen short. Amongst the possible biomarkers examined, one area is often overlooked, understudied, or inappropriately investigated: the field of redox biology. Redox molecules are free radical and/or reactive species that are generated as a consequence of the necessity of electron movement for life. These reactive molecules, too, are essential for life, but in excess are denoted as oxidative stress and often associated with many diseases. The few studies that have examined redox biology parameters have often utilized outdated and nonspecific methods, as well as have reported confounding results, which has made it difficult to conclude the role for redox in PTSD. Herein, we provide a foundation of how redox biology may underlie diseases like PTSD, critically examine redox studies of PTSD, and provide future directions the field can implement to enhance standardization, reproducibility, and accuracy of redox assessments for the use of diagnosis, prognosis, and therapy of this debilitating mental health disorder

    Reproductive traits and population dynamics of benthic invertebrates indicate episodic recruitment patterns across an Arctic polar front

    Get PDF
    Climate-induced changes in the ocean and sea ice environment of the Arctic are beginning to generate major and rapid changes in Arctic ecosystems, but the effects of directional forcing on the persistence and distribution of species remain poorly understood. Here, we examine the reproductive traits and population dynamics of the bivalve Astarte crenata and sea star Ctenodiscus crispatus across a north–south transect that intersects the polar front in the Barents Sea. Both species present large oocytes indicative of short pelagic or direct development that do not differ in size–frequency between 74.5 and 81.3º latitude. However, despite gametogenic maturity, we found low frequencies of certain size classes within populations that may indicate periodic recruitment failure. We suggest that recruitment of A. crenata could occur periodically when conditions are favorable, while populations of C. crispatus are characterized by episodic recruitment failures. Pyloric caeca indices in C. crispatus show that food uptake is greatest at, and north of, the polar front, providing credence to the view that interannual variations in the quantity and quality of primary production and its flux to the seafloor, linked to the variable extent and thickness of sea ice, are likely to be strong determinants of physiological fitness. Our findings provide evidence that the distribution and long-term survival of species is not only a simple function of adaptive capacity to specific environmental changes, but will also be contingent on the frequency and occurrence of years where environmental conditions support reproduction and settlement

    Invariant Gametogenic Response of Dominant Infaunal Bivalves From the Arctic Under Ambient and Near-Future Climate Change Conditions

    Get PDF
    Arctic marine ecosystems are undergoing a series of major rapid adjustments to the regional amplification of climate change, but there is a paucity of knowledge about how changing environmental conditions might affect reproductive cycles of seafloor organisms. Shifts in species reproductive ecology may influence their entire life-cycle, and, ultimately, determine the persistence and distribution of taxa. Here, we investigate whether the combined effects of warming and ocean acidification based on near-future climate change projections affects the reproductive processes in benthic bivalves (Astarte crenata and Bathyarca glacialis) from the Barents Sea. Both species present large oocytes indicative of lecithotrophic or direct larval development after ∼4 months exposure to ambient [&lt;2°C, ∼400 ppm (CO2)] and near-future [3–5°C, ∼550 ppm (CO2)] conditions, but we find no evidence that the combined effects of acidification and warming affect the size frequency distribution of oocytes. Whilst our observations are indicative of resilience of this reproductive stage to global changes, we also highlight that the successful progression of gametogenesis under standard laboratory conditions does not necessarily mean that successful development and recruitment will occur in the natural environment. This is because the metabolic costs of changing environmental conditions are likely to be offset by, as is common practice in laboratory experiments, feeding ad libitum. We discuss our findings in the context of changing food availability in the Arctic and conclude that, if we are to establish the vulnerability of species and ecosystems, there is a need for holistic approaches that incorporate multiple system responses to change.</p

    Evaluating Airsoft Electric Guns for Control of Invasive Brown Treesnakes

    Get PDF
    Firearms are often used in lethal control of invasive vertebrates, but safety and regulatory aspects limit the circumstances under which they can be used. During August 2016 at the Brown Treesnake Project laboratory on Guam, we evaluated hobby‐grade Airsoft Electric Guns (AEGs; a lower powered, less‐hazardous, and less‐regulated alternative to firearms) for capture and control of small animals, with specific emphasis on invasive brown treesnakes (Boiga irregularis). Tests of AEGs differing in power with ammunition (plastic pellets) masses ranging from 0.20 to 0.39 g, fired at gelatin blocks from distances of 4, 8, and 12 m, showed that heavy ammunition is of overriding importance for maximizing lethality: 0.39‐g pellets penetrated more deeply at 12 m than did 0.20‐g pellets at 4 m. Inspection of tissue damage in brown treesnake carcasses subjected to fire with the 0.39‐g ammunition from the same distances suggested that injuries sustained by a direct hit from 12 m would often be lethal, and snakes would be unlikely to survive multiple hits from automatic fire discharged at approximately 17/s. Limited trials with live snakes helped us to understand behavioral responses in a snake hit by ≥1 pellets, including distance traveled over time. Based on these factors, we assessed the risk that a snake injured by pellet fire might evade subsequent capture by rapid responders in the proximity. We also discuss ethical considerations and regulatory advantages of using AEGs

    The reproductive ecology of the Antarctic bivalve Aequiyoldia eightsii (Protobranchia: Sareptidae) follows neither Antarctic nor taxonomic patterns

    Get PDF
    The accepted paradigm for reproduction in Antarctic marine species is one where oogenesis takes 18 months to 2 years, and a bimodal egg-size distribution where two cohorts of eggs are present in female gonads throughout the year. These slow gametogenic traits are driven by low temperature and/or the restriction of resource availability because of extreme seasonality in the marine environment. Here we present data on the reproductive ecology of the common Antarctic bivalve Aequiyoldia eightsii (Jay, 1839) (Protobranchia: Sarepidae) from monthly samples collected between January 2013 and May 2014 at Hangar Cove, Rothera Point on the West Antarctic Peninsula. These data show that A. eightsii is unusual because it does not follow the typical pattern expected for reproduction in Antarctic marine invertebrates, and differs also from closely related nuculanid protobranch bivalves with respect to gametogenic duration and reproductive periodicity. Continuous oogenesis, evidenced by the year-round occurrence of previtellogenic, vitellogenic, and ripe oocytes in female gonads, is supplemented by a seasonal increase in reproductive intensity and spawning in Austral winter (April–May), evidenced by the loss of mature spermatozoa and ripe oocytes from males and females, respectively. The simultaneous occurrence of these contrasting traits in individuals is attributed to a flexible feeding strategy (suspension and deposit feeding) in response to seasonal changes in food supply characteristic of the Antarctic marine environment. Asynchrony between individual females is also notable. We hypothesise that the variability may represent a trade-off between somatic and reproductive growth, and previously reported internal interannual cycles in shell growth

    Preparation of an ion with the highest calculated proton affinity: ortho-diethynylbenzene dianion

    Get PDF
    Owing to the increased proton affinity that results from additional negative charges, multiply-charged anions have been proposed as one route to prepare and access a range of new and powerful superbases . Paradoxically, while the additional electrons in polyanions increase basicity they serve to diminish the electron binding energy and thus, it had been thought, hinder experimental synthesis. We report the synthesis and isolation of the ortho-diethynylbenzene dianion (ortho-DEB2−) and present observations of this novel species undergoing gas-phase proton-abstraction reactions. Using a theoretical model based on Marcus-Hush theory, we attribute the stability of ortho-DEB2− to the presence of a barrier that prevents spontaneous electron detachment. The proton affinity of 1843 kJ mol−1 calculated for this dianion superbase using high-level quantum chemistry calculations significantly exceeds that of the lithium monoxide anion, the most basic system previously prepared. The ortho-diethynylbenzene dianion is therefore the strongest base that has been experimentally observed to date
    corecore