4 research outputs found

    Anti-epileptic drug topiramate upregulates TGFβ1 and SOX9 expression in primary embryonic palatal mesenchyme cells: Implications for teratogenicity.

    No full text
    Topiramate is an anti-epileptic drug that is commonly prescribed not just to prevent seizures but also migraine headaches, with over 8 million prescriptions dispensed annually. Topiramate use during pregnancy has been linked to significantly increased risk of babies born with orofacial clefts (OFCs). However, the exact molecular mechanism of topiramate teratogenicity is unknown. In this study, we first used an unbiased antibody array analysis to test the effect of topiramate on human embryonic palatal mesenchyme (HEPM) cells. This analysis identified 40 differentially expressed proteins, showing strong connectivity to known genes associated with orofacial clefts. However, among known OFC genes, only TGFβ1 was significantly upregulated in the antibody array analysis. Next, we validated that topiramate could increase expression of TGFβ1 and of downstream target phospho-SMAD2 in primary mouse embryonic palatal mesenchyme (MEPM) cells. Furthermore, we showed that topiramate treatment of primary MEPM cells increased expression of SOX9. SOX9 overexpression in chondrocytes is known to cause cleft palate in mouse. We propose that topiramate mediates upregulation of TGFβ1 signaling through activation of γ-aminobutyric acid (GABA) receptors in the palate. TGFβ1 and SOX9 play critical roles in orofacial morphogenesis, and their abnormal overexpression provides a plausible etiologic molecular mechanism for the teratogenic effects of topiramate

    In vivo prostaglandin E2 treatment alters the bone marrow microenvironment and preferentially expands short-term hematopoietic stem cells

    No full text
    Microenvironmental signals can determine hematopoietic stem cell (HSC) fate choices both directly and through stimulation of niche cells. In the bone marrow, prostaglandin E2 (PGE2) is known to affect both osteoblasts and osteoclasts, whereas in vitro it expands HSCs and affects differentiation of hematopoietic progenitors. We hypothesized that in vivo PGE2 treatment could expand HSCs through effects on both HSCs and their microenvironment. PGE2-treated mice had significantly decreased number of bone trabeculae, suggesting disruption of their microarchitecture. In addition, in vivo PGE2 increased lineage− Sca-1+ c-kit+ bone marrow cells without inhibiting their differentiation. However, detailed immunophenotyping demonstrated a PGE2-dependent increase in short-term HSCs/multipotent progenitors (ST-HSCs/MPPs) only. Bone marrow cells transplanted from PGE2 versus vehicle-treated donors had superior lymphomyeloid reconstitution, which ceased by 16 weeks, also suggesting that ST-HSCs were preferentially expanded. This was confirmed by serial transplantation studies. Thus in vivo PGE2 treatment, probably through a combination of direct and microenvironmental actions, preferentially expands ST-HSCs in the absence of marrow injury, with no negative impact on hematopoietic progenitors or long-term HSCs. These novel effects of PGE2 could be exploited clinically to increase donor ST-HSCs, which are highly proliferative and could accelerate hematopoietic recovery after stem cell transplantation
    corecore